Что сильнее связывает кислород гемоглобин или миоглобин

Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым бе

Содержание:

  • Главное отличие
  • Гемоглобин против Миоглобина
  • Сравнительная таблица
  • Что такое гемоглобин?
  • Типы
  • Что такое миоглобин?
  • Ключевые отличия
  • Заключение

Главное отличие

Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым белком, который передает кислород только мышечным клеткам.

Гемоглобин против Миоглобина

Дыхание – это фундаментальный процесс жизни. Почти каждый организм нуждается в транспортировке кислорода ко всем клеткам своего тела для своего выживания. Гемоглобин и миоглобин – два основных глобиновых белка в живых организмах, которые связывают кислород и переносят их в клетки. Но между ними существует ряд различий. Гемоглобин переносит кислород из легких во все части или клетки организма позвоночных, а также некоторых беспозвоночных, в то время как миоглобин переносит кислород только в мышечные клетки. Гемоглобин состоит из 4 полипептидных цепей, в то время как миоглобин состоит из одной полипептидной цепи. Гемоглобин находится в кровотоке, а миоглобин – в мышечных клетках.

Сравнительная таблица

ГемоглобинМиоглобин
Гемоглобин является глобиновым белком, который переносит кислород из легких во все части тела.Миоглобин является глобиновым белком, который переносит кислород к мышечным клеткам.
Структура
Имеет тетрамерную структуру.Имеет мономерную структуру.
цепь
Он состоит из 4 цепочек двух разных типов, то есть альфа и бета, дельта, гамма или эпсилон (на основе типов различных типов гемоглобина).Он состоит из одной полипептидной цепи.
Место нахождения
Он расположен по всему телу.Он расположен в мышечных клетках.
Способность связывать
Обладает способностью связываться с CO2, NO, CO, O2 и H +Имеет способность связываться с O2
Количество гемов
У него четыре гема, по одному в каждой из субъединицВ миоглобине есть один гем
Количество молекул кислорода
Четыре молекулы кислорода могут связываться с гемоглобиномОдна молекула кислорода связывается с миоглобином
Молекулярный вес
Его молекулярный вес составляет 64 кДа.Его молекулярная масса составляет 16,7 кДа.
Сродство связывать с кислородом
Обладает низким сродством связываться с кислородомМиоглобин обладает высокой способностью связываться с кислородом
Концентрация в крови
Он имеет высокую концентрацию в эритроцитахИмеет низкую концентрацию в крови
кривая
Он показывает сигмовидную кривую связыванияЭто показывает гиперболическую кривую
Также известен как
Он также известен как HbОн также известен как Мб
функция
Гемоглобин связывает кислород и транспортируется во все части тела через кровь.Миоглобин передает кислород только мышечным клеткам, что обеспечивает помощь во время голодания кислорода.

Что такое гемоглобин?

Гемоглобин является многосубъединичным глобиновым белком с четвертичной структурой и состоит из четырех полипептидных цепей, двух α и двух β субъединиц. Каждая альфа-цепь состоит из 144 остатков, а каждая бета-цепь состоит из 146 остатков. Противоположные субъединицы, такие как альфа и бета, ассоциируются сильнее, чем аналогичные субъединицы альфа-альфа или бета-бета. Это железосодержащий металлопротеин. В гемоглобине каждая из четырех субъединиц присоединена к небелковой протезной гем-группе, где молекула кислорода связывается. Таким образом, это означает, что гемоглобин может связывать четыре молекулы кислорода с четырьмя гем-группами в каждой цепи. Он имеет низкое сродство к кислороду в своем дезоксигенированном состоянии, но когда первая молекула кислорода связывается с гемоглобином, это приводит к изменению его структуры, что облегчает связывание других молекул кислорода. Этот процесс называется аллостерическим (через пространство) взаимодействием / кооперативностью. Гемоглобин обнаружен в избытке в эритроцитах и ​​дает им красный цвет. Это вовлекает в транспортировку кислорода и углекислого газа к или от всех частей тела. Это также вовлекает метаболизм эритроцитов и также поддерживает pH крови.

Типы

  • Гемоглобин А1 (Hb-А1).
  • Гемоглобин А2 (Hb-A2).
  • Гемоглобин А3 (Hb-A3).
  • Эмбриональный гемоглобин.
  • Гликозилированный гемоглобин.
  • Гетоглобин плода (Hb-A1).

Что такое миоглобин?

Миоглобин представляет собой белок мономера глобина, который проявляет вторичную структуру. Он состоит из одной полинуклеотидной цепи, которая состоит из 153 остатков. Он имеет единственную группу heam, присоединенную к своей единственной полипептидной цепи. Таким образом, одна молекула кислорода может связываться с ним. Но его связывающая способность выше, чем у гемоглобина, поэтому он служит в качестве запасающего кислород белка, который высвобождается во время функционирования мышц. Он содержится в мышечных клетках и обеспечивает их кислородом по требованию. Помогает организму в голодных условиях кислорода, особенно в анаэробных условиях. Он также регулирует температуру тела. Миоглобин не имеет никакого типа.

Ключевые отличия

  1. Гемоглобин – это белок глобина, который переносит кислород из легких во все части тела, а миоглобин – это белок глобина, который переносит кислород только в мышечные клетки.
  2. Гемоглобин имеет тетрамерную структуру, в то время как миоглобин является мономером по структуре.
  3. Гемоглобин состоит из 4 полипептидных цепей, тогда как миоглобин состоит из одной полипептидной цепи.
  4. Гемоглобин присутствует в эритроцитах, а миоглобин – в мышцах
  5. Гемоглобин имеет четыре группы гемов, поэтому он может связывать четыре молекулы кислорода, но миоглобин имеет одну группу гемов, поэтому он может связывать одну молекулу кислорода, потому что гем-группа является местом связывания кислорода
  6. Гемоглобинм может связываться с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин может связываться только с O2.
  7. Гемоглобин имеет молекулярную массу 64 кДа, тогда как миоглобин имеет молекулярную массу 16,7 кДа.
  8. Гемоглобин имеет низкое сродство связываться с кислородом, в то время как миоглобин имеет высокое сродство связываться с кислородом.
  9. Гемоглобин участвует в транспортировке кислорода и углекислого газа ко всем частям тела, в метаболизме эритроцитов, а также поддерживает рН крови, в то время как миоглобин находится в мышечных клетках и обеспечивает их кислородом по мере необходимости, а также регулирует температура тела.

Заключение

Из вышеприведенного обсуждения делается вывод, что гемоглобин представляет собой тетрамер, состоящий из четырех полинуклеотидных цепей, и транспортирует кислород и диоксид углерода во все части тела, тогда как миоглобин представляет собой мономер, состоящий из одной нуклеотидной цепи, и транспортирует кислород к мышечным клеткам только по требованию. ,

Источник

Особые свойства молекулы гемоглобина, которые делают его столь эффективным переносчиком кислорода в крови, легче всего уяснить из сравнения миоглобина и гемоглобина в отношении их сродства к кислороду. На рис. 8-16 показаны кривые насыщения кислородом для гемоглобина и миоглобина, характеризующие степень насыщения этих белков кислородом (т.е. отношение числа участков молекулы, связывающих кислород, к общему числу участков, способных к такому связыванию) в зависимости от парциального давления газообразного кислорода, находящегося в равновесии с раствором белка.

Рис. 8-15. Фоток рафия нормальных эритроцитов человека, полученная при помощи сканирующего электронного микроскопа.

Прежде всего из графика ясно, что миоглобин имеет очень высокое сродство к кислороду: при парциальном давлении кислорода, равном всего лишь 1-2 мм рт. ст., он уже на 50% насыщен кислородом. Кроме того, мы видим, что кривая насыщения миоглобина кислородом имеет вид простой гиперболы, как и следует ожидать из закона действующих масс применительно к равновесной реакции:

При парциальном давлении кислорода, равном 20 мм рт. ст., миоглобин оказывается насыщенным кислородом более чем на 95%. В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду; кроме того, кривая насыщения гемоглобина кислородом имеет сигмоидную, т.е. S-образную, форму (рис. 8-16). Это означает, что при связывании первой молекулы кислорода (нижняя часть S-образной кривой, соответствующая парциальным давлениям кислорода ниже 10 мм рт. ст.), гемоглобин имеет очень низкое сродство к кислороду, тогда как при связывании следующих молекул кислорода его сродство к ним становится намного выше, о чем свидетельствует крутая часть -образной кривой.

Рис. 8-16. Кривые насыщения кислородом для миог лобина и гемоглобина. Миоглобин обладает намного более высоким сродством к кислороду, чем гемоглобин. 50%-ное насыщение миоглобина кислородом достигается уже тогда, когда парциальное давление О, составляет всего 1 -2 мм рт. ст., тогда как для гемоглобина такое насыщение кислородом наступает лишь при парциальном давлении кислорода около 26 мм рт. ст. Обратите внимание, что в артериальной крови, вытекающей из легких (при парциальном давлении кислорода около 100 мм рт. ст.) оба белка – и миоглобин и гемоглобин – насыщены кислородом более чем на 95 %„ тогда как в покоящейся мыщце, где парциальное давление кислорода равно 40 мм рт. ст., гемоглобин насыщен кислородом лишь на 75%, а в работающей мышце при парциальном давлении кислорода всего около 10 мм рт. ст. только на 10%. Таким образом, гемоглобин очень эффективно отдает свой кислород в мышцах и других периферических тканях. Что же касается миоглобина, то при парциальном давлении кислорода, равном всего 10 мм рт. ст„ он все еще остается насыщенным кислородом почти на 90% и поэтому даже при столь низких парциальных давлениях кислорода отдает очень малую часть связанного с ним кислорода. Таким образом, сигмоидная кривая насыщения гемоглобина кислородом является результатом молекулярной адаптации гемоглобина к выполнению им транспортной функции в составе эритроцитов.

Фактически после связывания первой молекулы кислорода сродство повышается почти в 500 раз. Таким образом, четыре гемсодержащие полипептидные субъединицы гемоглобина различаются по степени их сродства к кислороду и зависят друг от друга в процессе его связывания.

Как только первая гемсодержащая полипептидная субъединица свяжет молекулу кислорода, она передает информацию об этом остальным субъединицам, у которых сразу же резко повышается сродство к кислороду. Такой обмен информацией между четырьмя гемсодержащими полипептидными субъединицами гемоглобина обусловлен кооперативным взаимодействием между субъединицами. Поскольку связывание первой молекулы кислорода одной из субъединиц гемоглобина увеличивает вероятность связывания следующих молекул кислорода остальными субъединицами, мы говорим, что гемоглобин имеет положительную кооперативностъ. Для положительной кооперативности характерны сигмоидные кривые связывания, подобные кривой насыщения гемоглобина кислородом. При связывании кислорода миоглобином, содержащим одну гемогруппу, молекула белка может присоединить только одну молекулу кислорода; в этом случае кооперативного связывания не наблюдается и кривая насыщения имеет вид простой гиперболы. Теперь мы понимаем. почему миоглобин и гемоглобин столь сильно различаются между собой по кислород-связывающей способности.

Мы будем использовать термин лиганд для обозначения специфической молекулы, связывающейся с белком; это может быть, например, молекула кислорода, если речь идет о гемоглобине (слово «лиганд» происходит от латинского слова, которое переводится как «связывать», «присоединять» и буквально означает «то, что присоединяется»). Многие другие олигомерные белки тоже имеют по нескольку лиганд-связывающих центров и, подобно гемоглобину, проявляют положительную кооперативность. Однако есть олигомерные белки, проявляющие отрицательную кооперативность: в этом случае связывание одной молекулы лиганда уменьшает вероятность связывания других молекул лиганда.

Источник

Гемоглобин и миоглобин что сильнее связывает кислород

Особые свойства молекулы гемоглобина, которые делают его столь эффективным переносчиком кислорода в крови, легче всего уяснить из сравнения миоглобина и гемоглобина в отношении их сродства к кислороду. На рис. 8-16 показаны кривые насыщения кислородом для гемоглобина и миоглобина, характеризующие степень насыщения этих белков кислородом (т.е. отношение числа участков молекулы, связывающих кислород, к общему числу участков, способных к такому связыванию) в зависимости от парциального давления газообразного кислорода, находящегося в равновесии с раствором белка.

Рис. 8-15. Фоток рафия нормальных эритроцитов человека, полученная при помощи сканирующего электронного микроскопа.

Прежде всего из графика ясно, что миоглобин имеет очень высокое сродство к кислороду: при парциальном давлении кислорода, равном всего лишь 1-2 мм рт. ст., он уже на 50% насыщен кислородом. Кроме того, мы видим, что кривая насыщения миоглобина кислородом имеет вид простой гиперболы, как и следует ожидать из закона действующих масс применительно к равновесной реакции:

При парциальном давлении кислорода, равном 20 мм рт. ст., миоглобин оказывается насыщенным кислородом более чем на 95%. В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду; кроме того, кривая насыщения гемоглобина кислородом имеет сигмоидную, т.е. S-образную, форму (рис. 8-16). Это означает, что при связывании первой молекулы кислорода (нижняя часть S-образной кривой, соответствующая парциальным давлениям кислорода ниже 10 мм рт. ст.), гемоглобин имеет очень низкое сродство к кислороду, тогда как при связывании следующих молекул кислорода его сродство к ним становится намного выше, о чем свидетельствует крутая часть

-образной кривой.

Рис. 8-16. Кривые насыщения кислородом для миог лобина и гемоглобина. Миоглобин обладает намного более высоким сродством к кислороду, чем гемоглобин. 50%-ное насыщение миоглобина кислородом достигается уже тогда, когда парциальное давление О, составляет всего 1 -2 мм рт. ст., тогда как для гемоглобина такое насыщение кислородом наступает лишь при парциальном давлении кислорода около 26 мм рт. ст. Обратите внимание, что в артериальной крови, вытекающей из легких (при парциальном давлении кислорода около 100 мм рт. ст.) оба белка — и миоглобин и гемоглобин — насыщены кислородом более чем на 95 %„ тогда как в покоящейся мыщце, где парциальное давление кислорода равно 40 мм рт. ст., гемоглобин насыщен кислородом лишь на 75%, а в работающей мышце при парциальном давлении кислорода всего около 10 мм рт. ст. только на 10%. Таким образом, гемоглобин очень эффективно отдает свой кислород в мышцах и других периферических тканях. Что же касается миоглобина, то при парциальном давлении кислорода, равном всего 10 мм рт. ст„ он все еще остается насыщенным кислородом почти на 90% и поэтому даже при столь низких парциальных давлениях кислорода отдает очень малую часть связанного с ним кислорода. Таким образом, сигмоидная кривая насыщения гемоглобина кислородом является результатом молекулярной адаптации гемоглобина к выполнению им транспортной функции в составе эритроцитов.

Фактически после связывания первой молекулы кислорода сродство повышается почти в 500 раз. Таким образом, четыре гемсодержащие полипептидные субъединицы гемоглобина различаются по степени их сродства к кислороду и зависят друг от друга в процессе его связывания.

Как только первая гемсодержащая полипептидная субъединица свяжет молекулу кислорода, она передает информацию об этом остальным субъединицам, у которых сразу же резко повышается сродство к кислороду. Такой обмен информацией между четырьмя гемсодержащими полипептидными субъединицами гемоглобина обусловлен кооперативным взаимодействием между субъединицами. Поскольку связывание первой молекулы кислорода одной из субъединиц гемоглобина увеличивает вероятность связывания следующих молекул кислорода остальными субъединицами, мы говорим, что гемоглобин имеет положительную кооперативностъ. Для положительной кооперативности характерны сигмоидные кривые связывания, подобные кривой насыщения гемоглобина кислородом. При связывании кислорода миоглобином, содержащим одну гемогруппу, молекула белка может присоединить только одну молекулу кислорода; в этом случае кооперативного связывания не наблюдается и кривая насыщения имеет вид простой гиперболы. Теперь мы понимаем. почему миоглобин и гемоглобин столь сильно различаются между собой по кислород-связывающей способности.

Мы будем использовать термин лиганд для обозначения специфической молекулы, связывающейся с белком; это может быть, например, молекула кислорода, если речь идет о гемоглобине (слово «лиганд» происходит от латинского слова, которое переводится как «связывать», «присоединять» и буквально означает «то, что присоединяется»). Многие другие олигомерные белки тоже имеют по нескольку лиганд-связывающих центров и, подобно гемоглобину, проявляют положительную кооперативность. Однако есть олигомерные белки, проявляющие отрицательную кооперативность: в этом случае связывание одной молекулы лиганда уменьшает вероятность связывания других молекул лиганда.

источник

МИОГЛОБИН И ГЕМОГЛОБИН. ТРАНСПОРТ КИСЛОРОДА

МИОГЛОБИН И ГЕМОГЛОБИН. ТРАНСПОРТ КИСЛОРОДА

МИОГЛОБИН – сложный глобулярный белок, третьего уровня структурной организации, молекула которого состоит из 1 полипептидной цепи и содержит 153 аминокислоты. В миоглобине содержится железопорфириновая группа (гем), и он способен обратимо присоединять кислород.

Миоглобин содержится в клетках скелетных мышц. Пептидная цепь миоглобина напоминает длинную колбасу, причудливо скрученную. Было показано, что остов молекулы миоглобина состоит из 8 относительно прямолинейных отрезков, разделенных между собой местами сгибов. Каждый отрезок закручен в виде a-спирали. Все спирали являются правыми. 70 % аминокислотных остатков входят в состав спирализованных участков.

1. молекула миоглобина компактна (внутри нее может уместиться 4Н2О);

2. все полярные R- группы аминокислотных остатков расположены на внешней поверхности молекулы и находятся в гидратированном состоянии, т.е. связаны с Н2О;

3. неполярные, или гидрофобные R- группы располагаются в глубине молекулы и защищены от соприкосновения с Н2О;

4. остатки пролина встречаются только в метах сгибов пептидной цепи (пролин нарушает a-спираль). В местах сгибов находятся и другие аминокислоты, которые неспособны легко образовывать a-спираль (изолейцин, серин), и аминокислоты, боковые цепи которых несут одинаковые заряды при рН7;

5. у миоглобинов, выделенных из разных млекопитающих, конформация пептидных цепей сходна (но они несколько отличаются по аминокислотному составу).

ГЕМ — комплекс порфирина и иона железа в степени окисления +2.

Ион железа встроен в кольцо порфирина таким образом, что четыре координационные связи из шести (в состоянии гибридизации sp3d2 связи у шестикоординационного железа направлены к вершинам октаэдра) затрачены на образование связей с атомами азота, еще одна связана с азотом имидазольного остатка ГИС полипептидной цепи (проксимальный Гистидин F8), а другая- также с имидазольным остатком другого ГИС (дистальный ГИС Е7). Молекула кислорода присоединяется между остатком дистального ГИС и железом. Изменения степени окисления железа при этом не происходит. Порфириновое кольцо (ГЕМ) не находится на плоскости молекулы белка, а частично погружено в него. Молекула кислорода присоединяется к гему, входя как бы через открывающуюся дверцу. Пока остается несным, дожидается молекула кислорода случайного открывания двери, или существует какой-то механизм, пускающий кислород к гему.

Миоглобин сосредоточен, главным образом, в мышцах и его главной функцией является хранение кислорода. Скорость насыщения миоглобина кислородом намного превышает таковую для гемоглобина. Миоглобин мало приспособлен для транспортировки кислорода из легких в ткани, поскольку скорость отдачи кислорода в тканях невелика (при давлении 1 мм рт. ст. примерно половина миоглобина все еще не отдает кислород).

Вопросы транспортировки кислорода решаются при участии белка четвертичной структуры — гемоглобина.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА ГЕМОГЛОБИНА. При помощи рентгеноструктурного анализа Перутцем и его сотрудниками в Кембридже установлены третичная и четвертичная структуры гемоглобина. Гемоглобин содержится в эритроцитах и служит для переноса кислорода. Молекулярная масса гемоглобина 64500. Молекула состоит из 4 отдельных полипептидных цепей: 2 a-цепей (141 остаток аминокислот) и 2 b- цепей (146 остатков аминокислот в каждой), каждая из которых связана нековалентной связью с остатками гема. Каждая из 4 отдельных цепей гемоглобина свернута нерегулярным образом и состоит из ряда a- спиральных участков, разделенных местами сгибов.

a- и b- цепи гемоглобина примерно на 70 % состоят из a-спиральных участков. По своей третичной структуре a- и b-цепи очень сходны, они образованы из a- спиральных участков одинаковой длины, согнутых под одинаковыми углами и в одних и тех же направлениях. Третичная структура a- и b-цепей гемоглобина очень сходна с третичной структурой единственной цепи миоглобина. Сходная функция гемоглобина и миоглобина, обусловленная способностью обратимо связывать О2, объясняется сходством третичной структуры.

Согласно данным рентгеноструктурного анализа молекула гемоглобина по своей форме приближается к сфере диаметром

5,5 нм. 4 полипептидные цепи уложены относительно друг друга приблизительно в виде тетраэдра, в результате чего возникает характерная четвертичная структура гемоглобина.

Это очень компактная структура. Большинство гидрофобных R- групп аминокислот находится внутри глобулы, а большинство гидрофильных R- групп – снаружи. В молекуле гемоглобина возникает небольшое число контактов между одинаковыми цепями (2 a- и 2 b- цепями) и множество контактов между a- и b- цепями. В образовании таких контактов принимают участие в основном гидрофобные R- группы аминокислотных остатков.

При присоединении к гемоглобину кислорода расстояние между 2 b- цепями гемоглобина уменьшается и изменяется четвертичная структура. Таким образом, гемоглобин и оксигемоглобин (насыщенный кислородом) различаются по своей четвертичной структуре.

Четвертичная структура олигомерных белков также определяется первичной аминокислотной последовательностью входящих в их состав отдельных полипептидных цепей. Олигомерные белки (гемоглобин) обнаруживают способность к самосборке.

Главное отличие гемоглобина от миоглобина заключается в проявлении особого рода эффектов — кооперативных, влияющих на скорости присоединения- отсоединения молекул кислорода. Каждая молекула гемоглобина способна присоединять и переносить четыре молекулы кислорода, при этом кооперативность проявляется в том, что как присоединение, так и отсоединение каждой последующей молекулы кислорода облегчается в результате структурных изменений в конформации молекулы, которых у гемоглобина имеется две основных- оксигенированная и дезоксигенированная. Промежуточные состояния нестабильны. Предполагается следующий механизм кооперативного эффекта. Присоединение первой молекулы кислорода приводит к тому, что атом железа смещается от своего места примерно на 0,4-0,6 ангстрем, вызывая изменения конформации субъединицы. Изменившаяся конформация по аллостерическому эффекту облегчает присоединение кислорода к другой субъединице и т.д. Это позволяет максимально ускорить процесс присоединения кислорода в легких (рО2 = 100 мм рт. ст.). При переносе оксигенированного гемоглобина в капилляры тканей (рО2 = 5 мм рт. ст.) отсоединение молекул кислорода протекает также быстро, по кооперативному эффекту. Известны, впрочем, и химические регуляторы скорости и полноты присоединения кислорода. К ним, в частности, относится 2,3- дифосфоглицериновая кислота. Она облегчает присоединение кислорода у организмов, обитающих в высокогорных районах.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9142 —

| 7755 — или читать все.

источник

Гемоглобин и миоглобин что сильнее связывает кислород

Рекомендуем:Физиология человека:ФизиологияФизиология клеткиЭндокринная системаПищеварительная системаФизиология клеток кровиОбмен веществ. ПитаниеВыделение.Функции почекРепродуктивная функцияСенсорные системыФизиология иммунной системыСистема кровообращенияДыхательная системаВидео по физиологииКниги по физиологииФорум

Источник