Где происходит разрушение гемоглобина

Разрушение гемоглобина. Разновидности анемий

При разрыве эритроцитов их гемоглобин почти сразу же фагоцитируется макрофагами во многих частях тела, но особенно клетками Купфера печени и макрофагами селезенки и костного мозга. В течение нескольких следующих часов или дней макрофаги освобождают железо из гемоглобина, и оно возвращается в кровь и переносится трансферрином либо в костный мозг для формирования новых красных клеток крови, либо в печень и другие ткани для хранения в форме ферритина.

Порфириновая часть молекулы гемоглобина превращается макрофагами через ряд стадий в желчный пигмент билирубин, который выделяется в кровь и позднее удаляется из организма путем секреции печенью в желчь.

Анемии

Анемия означает недостаток гемоглобина в крови, причиной может быть либо слишком малое число красных клеток крови, либо слишком малое количество гемоглобина в этих клетках. Далее представлены некоторые типы анемий и их физиологические причины.

а) Анемия, связанная с потерей крови. После острой кровопотери организм возмещает жидкую часть плазмы в течение 1-3 сут, но при этом концентрация красных клеток крови остается низкой. Концентрация эритроцитов обычно восстанавливается до нормы в течение 3-6 нед, если не происходит повторного кровотечения.

Часто при хронической кровопотере у человека железо из кишечника не может всасываться достаточно быстро, чтобы обеспечить адекватное возмещение теряемого с кровью гемоглобина. Формируемые в этом случае красные клетки крови гораздо мельче нормальных эритроцитов и содержат слишком мало гемоглобина, что характерно для микроцитарной гипохромной анемии; такие эритроциты показаны на рисунке.

б) Апластическая анемия. Аплазия костного мозга означает потерю функционирующего костного мозга. Например, у человека, подвергшегося облучению гамма-лучами при взрыве атомной бомбы, может произойти полное разрушение костного мозга с последующим развитием в течение нескольких недель летальной анемии. Тот же эффект могут вызвать избыточная рентгенотерапия, некоторые промышленные химикаты и даже лекарства, к которым у человека может быть повышенная чувствительность.

в) Мегалобластная анемия. На основании изложенного ранее обсуждения роли витамина B12, фолиевой кислоты и внутреннего фактора, секретируемого слизистой желудка, легко понять, что недостаток любого из этих веществ может привести к замедлению репродукции эритроцитов в костном мозге. В результате формируются слишком крупные красные клетки крови разнообразной формы, которые называют мегалобластами.

Следовательно, атрофия слизистой желудка, например при пернициозной анемии, или потеря всего желудка после хирургической тотальной гастрэктомии могут привести к мегалобластной анемии. Мегалобластная анемия часто развивается также у больных с кишечной спру, при которой плохо всасываются фолиевая кислота, витамин B12 и другие соединения витаминов группы В. Поскольку при этих состояниях эритробласты не могут пролиферировать достаточно быстро, чтобы формировать нормальное количество красных клеток крови, те эритроциты, которые формируются, по большей части увеличены в размерах, имеют неправильную форму и ломкие мембраны. Эти клетки легко рвутся, оставляя человека без необходимого количества красных клеток крови.

г) Гемолитическая анемия. Различные аномалии красных клеток крови, многие из которых — наследственные, делают клетки столь хрупкими, что они легко разрываются, проходя через капилляры, особенно в селезенке. Даже если количество формируемых красных клеток крови в норме или значительно ее превышает, как при некоторых гемолитических болезнях, срок жизни хрупкого эритроцита так короток, что клетки разрушаются быстрее, чем могут формироваться нормальные эритроциты; результатом этого является тяжелая анемия. Далее указаны некоторые из таких типов анемий.

При наследственном сфероцитозе красные клетки крови очень мелкие и сферические, а не двояковогнутые диски. Эти клетки не могут выдерживать сдавливания, поскольку не имеют нормальной свободной, мешкообразной клеточной мембраны, характерной для двояковогнутых дисков. При прохождении через пульпу селезенки и некоторые другие сосудистые ложа они легко ломаются даже при небольшом сдавливании.

При серповидно-клеточной анемии, которой болеют 0,3-1,0% коренных жителей Западной Африки, красные клетки крови содержат аномальный гемоглобин — гемоглобин S с поврежденными цепочками в его молекуле. Под действием низких концентраций кислорода такой гемоглобин осаждается в виде длинных кристаллов внутри эритроцита. Эти кристаллы удлиняют клетку и придают ей вид серпа, а не двояковогнутого диска.

Кроме того, осажденный гемоглобин повреждает клеточную мембрану, в результате клетка становится очень хрупкой, что сопровождается тяжелой анемией. Такие больные часто переживают порочный круг событий, называемый кризисом серповидно-клеточной болезни, при котором низкое напряжение кислорода в тканях вызывает образование серповидных форм эритроцитов, что ведет к разрушению красных клеток крови, а значит — к дальнейшему снижению напряжения кислорода, усилению образования серповидных форм и разрушению красных клеток крови. Сразу после начала процесс быстро прогрессирует, приводя в течение нескольких часов к резкому снижению числа красных клеток крови и часто — к смерти.

При гемолитической болезни новорожденных (эритробластозе) антитела от резус-отрицательной (Rh-) матери атакуют резус-положительные (Rh+) эритроциты плода. В результате резус-положительные клетки становятся ломкими, что ведет к их быстрому разрушению, способствуя развитию у новорожденного тяжелой анемии. Чрезвычайно быстрое формирование новых эритроцитов для возмещения разрушенных при гемолитической болезни новорожденных ведет к выделению в кровь из костного мозга большого количества молодых бластных форм красных клеток крови.

– Также рекомендуем “Влияние анемии на кровообращение. Полицитемия – эритремия”

Оглавление темы “Эритропоэз. Белые клетки крови”:

1. Влияние эритропоэтина на эритрогенез. Витамин В12 и фолиевая кислота в эритропоэзе

2. Пернициозная анемия. Образование гемоглобина

3. Связывание гемоглобина с кислородом. Обмен железа

4. Всасывание железа в кишечнике. Длительность жизни эритроцитов

5. Разрушение гемоглобина. Разновидности анемий

6. Влияние анемии на кровообращение. Полицитемия – эритремия

7. Влияние полицитемии на кровообращение. Лейкоциты – белые клетки крови

8. Типы белых клеток крови. Происхождение белых клеток крови

9. Длительность жизни белых клеток крови. Нейтрофилы и макрофаги

10. Фагоцитоз. Механизмы и значение фагоцитоза

Источник

За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов.

Эритроциты в норме живут 90-120 дней, после чего лизируются в клетках ретикулоэндотелиальной системы – макрофагах селезенки (главным образом), купферовских клетках печени и макрофагах костного мозга. При разрушении эритроцитов в кровеносном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и также переносится в клетки РЭС селезенки, печени и костного мозга.

Синтез билирубина

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина. Высвобождаемое железо может либо запасаться в клетке в комплексе с ферритином, либо выделяться наружу и связываться с трансферрином.

Синтез билирубина

Реакции распада гемоглобина и образования билирубина

Билирубин – токсичное, жирорастворимое вещество, способное разобщать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Строение билирубина

Выведение билирубина

Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямой билирубин.

Схема нормального обмена билирубина в норме

Этапы метаболизма билирубина в организме

Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (транспортный белок органических анионов) или по механизму флип-флоп. Далее при участии цитозольного связывающего белка лигандина (Y-протеин) билирубин транспортируется в ЭПР, где протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию конъюгации могут вступать сульфаты, фосфаты, глюкозиды.

Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазы превращаются в свободный билирубин. Одновременно, даже в норме (особенно у взрослых), некоторое количество билирубин-глюкуронидов может попадать из желчи в кровь по межклеточным щелям.

Таким образом, в плазме крови обычно присутствуют две формы билирубина: свободный (непрямой), попадающий сюда из клеток РЭС (80% и более всего количества), и связанный (прямой), попадающий из желчных протоков (в норме не более 20%).

Термины “связанный“, “конъюгированный“, “свободный“, “несвязанный” отражают взаимодействие билирубина и глюкуроновой кислоты (но не билирубина и альбумина!).

Термины “прямой”  и “непрямой” введены, исходя из возможности химической реакции билирубина с диазореактивом  Эрлиха. Связанный билирубин реагирует с реактивом напрямую, без добавления дополнительных реагентов, т.к. является водорастворимым. Несвязанный (жирорастворимый) билирубин требует добавочных реактивов, реагирует не прямо.

Превращение в кишечнике

В кишечнике билирубин подвергается восстановлению под действием микрофлоры до мезобилирубина и мезобилиногена (уробилиногена). Часть уробилиногена всасывается и с кровью портальной вены попадает в печень, где либо распадается до моно-, ди- и трипирролов, либо  окисляется до билирубина и снова экскретируется. При этом при здоровой печени в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами.

Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается до стеркобилиногена. Далее

  • малая часть стеркобилиногена может всасываться и катаболизировать в печени, подобно уробилиногену,
  • незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и в мочу. После окисления на воздухе из стеркобилиногена образуется стеркобилин мочи,
  • однако основное количество стеркобилиногена достигает нижних отделов толстого кишечника и выделяется. В прямой кишке и на воздухе стеркобилиноген окисляется в стеркобилин, окрашивая кал,
  • аналогично уробилиноген, появляющийся в моче при патологии печени, окисляется в уробилин.

Очень часто стеркобилиноген, содержащийся в нормальной моче, называют уробилиногеном. И в клинической практике обычно не проводят различий между стеркобилиногеном и уробилиногеном мочи, их рассматривают как один пигмент – урохромы (уробилиноиды), что может создавать некоторую путаницу при оценке результатов анализа.

Источник

В организме здорового человека с массой тела 70 кг каждый час разрушается около 1-2х108 эритроцитов, что, в перерасчете на массу гемоглобина, подвергающегося распаду, составляет, примерно, 6 г гемоглобина в сутки. Белковая часть гемоглобина разрушается до аминокислот, которые вновь используются клетками для синтеза белков. Катионы железа гема пополняют запасы железа в составе белка печени ферритина, а порфириновое кольцо гема разрушается до специальных продуктов – желчных пигментов (биливердин, билирубины и пигменты, образующиеся из билирубина в кишечнике).

Билирубин IXa

Билирубина диглюкуронид

Рис.19. Структура токсичного билирубина IXa и нетоксичного диглюкуронида билирубина.

Распад гемоглобина начинается, преимущественно, в клетках Купфера (печень) и клетках ретикулоэндотелиальной системы (РЭС) селезёнки (схема 3). Формирование промежуточных метаболитов распада гемоглобина (вердоглобин, биливердин, билирубин IXa) может происходить как в печени, так и в других органах, прежде всего в селезенке (схема 3), а конъюгация билирубина (образование диглюкуронида – только в гепатоцитах (схема 4)).

В качестве дополнительных источников билирубина выступают многочисленные гемопротеины, содержащиеся в значительных количествах во всех клетках тканей внутренних органов. Среди них особое место занимает белок скелетной мускулатуры и миокарда миоглобин, а также цитохромы.

Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы, в связанный, конъюгированный или прямой билирубин(билирубина диглюкуронид) в гепатоците (рис.20) осуществляется в три этапа (на рис.20 обозначены римскими цифрами):

I этап — захват билирубина (Б) печеночной клеткой после отщепления альбумина;

II этап — образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

III этап— выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные протоки.

Рис. 20. Функция гепатоцита в формировании и секреции прямого билирубина. Бн – свободный (непрямой) билирубин; Б-Г – билирубин-глюкуронид (связанный, или прямой билирубин); Мбг – мезобилиноген (уробилиноген).

Схема 3. Образование неконьюгированного (непрямого) билирубина.

Схема 4. Конъюгация билирубина в паренхиме печени.

В качестве источника глюкуроновой кислоты в этой реакции используется УДФ-глюкуроновая кислота:

Фермент УДФ-глюкуронилтрансфераза, подобно другим энзимам печени, подвергается индукции некоторыми ксенобиотиками. К таковым относятся в частности, широко используемые в клинической практике препараты барбитурового ряда (снотворные и седативные), некоторые противосудорожные препараты других фармакологических групп, транквилизаторы и пр.

В отличие от свободного билирубина, его конъюгированная форма хорошо растворима в воде. Конъюгаты билирубина, преимущественно в форме диглюкуронидов (до 75%), выделяются в желчь. При этом их транспорт направлен в сторону большей концентрации, т.е. против концентрационного градиента. Он обеспечивается специальной энергозависимой системой активного транспорта, встроенной в клеточную мембрану гепатоцитов. Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и тонком кишечнике под воздействием микрофлоры происходит постепенное восстановление билирубина до мезобилиногена. Часть мезобилиногена. всасывается в кишечнике (уробилиноген) и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение до пирролов (схема 5).

Основное количество мезобилиногена из тонкой кишки поступает в толстую и здесь восстанавливается до стеркобилиногена при участии анаэробной микрофлоры (схема 5). Образовавшийся стеркобилиноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стеркобилина и выделяется с калом, определяя его окраску у здоровых людей. Лишь небольшая часть стеркобилиногена через геморроидальные вены попадает в систему нижней полой вены и в дальнейшем выводится с мочой (схема 5). Следовательно, в норме моча человека содержит лишь следы стеркобилиногена, не выявляющиеся клиническими лабораторными методами (за сутки его выделяется до 4 мг). К сожалению, до последнего времени в клинической практике стеркобилиноген, содержащийся в нормальной моче, продолжают называть уробилиногеном.

Схема 5. Превращение билирубина в кишечнике с образованием конечных продуктов в моче и кале.

При диагностике патологий пигментного обмена визуально оценивается интенсивность окраски мочи и кала больных, проводится количественное определение билирубинов (прямого, непрямого, общего) в плазме или сыворотке крови и уробилиногена в моче, иногда количественно определяется стеркобилин кала. При патологиях, сопровождающихся снижением концентрации эритроцитов (анемиях различной этиологии возникновения), обязятельным тестом является определение концентрации гемоглобина, и в качестве дополнительных, концентрация железа в крови человека.

Источник

Происходит в мононуклеарных фагоцитах (в селезенке и печени). Сначала происходит разрыв связи между I-м и II-м кольцами. Фермент – НАДзависимая оксигеназа. После ее действия образуется пигмент зеленого цвета – вердоглобин. В его составе сохраняется и железо и белок. В дальнейшем вердоглобин распадается на составные части: белок, железо и пигмент-биливердин. Железо образует комплекс с белком трансферрином, и этот комплекс поступает в ткани, где оно снова может быть использовано для синтезов или депонироваться в виде комплекса с белком ферритином.

Билирубин плохо растворим в воде, поэтому он адсорбируется на альбумине крови. Такой комплекс называется СВОБОДНЫМ или НЕПРЯМЫМ БИЛИРУБИНОМ. Он свободный, потому что не связан ни с каким другим веществом ковалентными связями; непрямой, потому что не дает прямой реакции с диазореактивом Эрлиха (для определения этого вида билирубина необходимо предварительно осадить альбумины).

В печени непрямой билирубин подвергается обезвреживанию путем связывания с глюкуроновой кислотой. В реакции расходуется УТФ. При этом к молекуле билирубина присоединяются 2 молекулы глюкуроновой кислоты (образование билирубиндиглюкуронида). Это вещество малотоксично и хорошо растворяется в воде, называется ПРЯМЫМ СВЯЗАННЫМ БИЛИРУБИНОМ, т.к. определяется в прямой реакции с диазореактивом Эрлиха и связан ковалентно с глюкуроновой кислотой. В таком виде билирубин поступает в желчь и вместе с ней выводится из организма.

При определении содержания билирубина используют диазореактив Эрлиха, который дает розовую окраску с билирубином и по ее интенсивности судят о концентрации билирубина в крови.

В крови человека примерно 75% непрямого билирубина от его общего количества. Общее содержание билирубина в норме (прямой+непрямой) от 8 до 20 мкмоль/л.

Билирубин – это конечный продукт распада гемоглобина у человека. Однако, поступив с желчью в кишечник, он превращается под действием ферментов микрофлоры кишечника. Сначала от него отщепляется глюкуроновая кислота, затем происходит частичное восстановление и образуется вещество, называемое “мезобилиноген”, а затем стеркобилиноген. Стеркобилиноген в основном выводится с калом и на воздухе (в кале) превращается в стеркобилин, а мезобилиноген частично всасывается из кишечника по системе v.portae, т.е. попадает в печень и там разрушается. Поэтому его нет у здоровых людей в крови. Небольшая часть стеркобилиногена тоже всасывается из кишечника через систему геморроидальных вен, т.е. попадает сразу в большой круг кровообращения, минуя печень, поэтому часть его выводится с мочой.

Значит, стеркобилиноген является компонентом мочи в норме.

В НОРМЕ:

Кровь:

Билирубин (в основном непрямой) – в норме (8-17мкмоль/л)

Гемоглобин – в норме (мужчины – 130-145 г/л; женщины – 110-130 г/л

Моча: светло-желтого цвета, стеркобилиноген – в норме, мезобилиногена нет.

Кал: нормальной окраски, стеркобилиноген – в норме

135.

ГЕМОЛИТИЧЕСКАЯ ЖЕЛТУХА Наблюдается при усилении распада эритроцитов. Билирубина образуется больше, чем в норме и скорость экскреции тоже увеличивается. Непрямой билирубин повышается в крови. В моче билирубина нет, а содержание стеркобилина в кале и в моче повышено.

136.

ПАРЕНХИМАТОЗНАЯ ЖЕЛТУХА (паренхиматозная). Наблюдается при повреждении гепатоцитов (например, при вирусном гепатите). Билирубин не обезвреживается. Желчные пигменты поступают не только в кишечник, но и в кровь. Т.е. в крови повышается содержание не только прямого, но и непрямого билирубина. Наблюдается билирубинурия. В моче обнаруживают мезобилиноген.

137.

ОБТУРАЦИОННАЯ ЖЕЛТУХА (механическая) Наблюдается при закупорке желчных протоков (например, при желчнокаменной болезни). Желчь продолжает вырабатываться, но поступает не только в желчные протоки, а также в кровь. В крови повышается уровень билирубина, в основном – прямого билирубина. Наблюдается билирубинурия. Содержание стеркобилина в моче и в кале снижено (кал становится светлым, а моча темнеет за счет прямого билирубина).

138.

Источник