Гемоглобин доставляет кислород не только в легкие

Гемоглобин доставляет кислород не только в легкие thumbnail

Гемоглобин. Роль гемоглобина в транспорте кислорода

Обычно из легких в ткани переносятся эритроцитами в химической связи с гемоглобином около 97% кислорода. Оставшиеся 3% кислорода транспортируются в физической растворенной форме плазмой крови. Таким образом, в нормальных условиях почти весь кислород переносится в ткани, будучи связанным с гемоглобином.

Химический состав гемоглобина представлен в наших остальных статьях, где говорилось, что молекула кислорода легко и обратимо связывается с гемом гемоглобина. При высоком Ро2, как это бывает в легочных капиллярах, кислород связывается с гемоглобином, а при низком Р02, как в капиллярах тканей, кислород освобождается от связи с гемоглобином. Такой механизм обеспечивает почти весь транспорт кислорода из легких в ткани.

Кривая диссоциации оксигемоглобина. На рисунке приведена кривая диссоциации оксигемоглобина, демонстрирующая прогрессивный прирост процентной доли оксигемоглобина (процента насыщения гемоглобина кислородом) при увеличении Ро2 в крови. В крови, покидающей легкие и входящей в системные артерии, напряжение О2 обычно составляет примерно 95 мм рт. ст., и на кривой диссоциации видно, что насыщение системной артериальной крови кислородом составляет 97%.

В нормальной возвращающейся из периферических тканей венозной крови напряжение О2 составляет около 40 мм рт. ст. и 75% — насыщение гемоглобина кислородом.

Максимальное количество кислорода, которое может находиться в связи с гемоглобином крови. В 100 мл крови здорового человека содержится около 15 г гемоглобина, и каждый грамм гемоглобина может связать максимально 1,34 мл кислорода (химически чистый гемоглобин может связать 1,39 мл кислорода, но примеси типа метгемоглобина снижают это количество). Итак, 15×1,34 = 20,1, значит, в среднем содержащееся в 100 мл количество гемоглобина при 100% насыщении может связать около 20 мл кислорода. Обычно это обозначают как 20 об% (объемных процентов).

роль гемоглобина

Кривая диссоциации оксигемоглобина может строиться не от процентного насыщения гемоглобина кислородом, а от количества содержания объемных процентов кислорода.

Количество кислорода, высвобождаемого гемоглобином во время прохождения артериальной крови через ткани.

В обычных условиях в системной артериальной крови, насыщенной кислородом на 97%, общее количество связанного с гемоглобином кислорода составляет около 19,4 мл на 100 мл крови. При прохождении через капилляры ткани этот объем снижается до 14,4 мл (Р02 — 40 мм рт. ст., насыщение гемоглобина — 75%). Итак, в нормальных условиях каждые 100 мл крови доставляют от легких к тканям около 5 мл кислорода.

При тяжелой физической работе мышечные клетки потребляют кислород с повышенной скоростью, что может привести к падению Р02 в интерстициальной жидкости мышцы от нормального уровня 40 мм рт. ст. до 15 мм рт. ст.

При таком низком парциальном давлении в каждых 100 мл крови остается только 4,4 мл связанного с гемоглобином кислорода. В этом случае каждые 100 мл протекающей крови отдают тканям 19,4 – 4,4, или 15 мл кислорода, т.е. каждый объем крови отдает тканям в 3 раза больше кислорода, чем в покое. Вспомните, что у хорошо тренированных бегунов-марафонцев сердечный выброс может увеличиться в 6-7 раз, чем при покое.

Если умножить это увеличение сердечного выброса (6-7 раз) на увеличение высвобождения кислорода в тканях каждым объемом крови (3 раза), получается, что к тканям было доставлено в 20 раз больше кислорода, чем в покое. Далее в этой главе Вы узнаете о существовании других факторов, улучшающих доставку кислорода в ткани во время физической нагрузки, поэтому даже при очень напряженной физической работе наблюдается только очень небольшое снижение Ро2 в мышечной ткани.

– Также рекомендуем “Коэффициент использования кислорода. Сохранение постоянства кислорода в тканях”

Оглавление темы “Кислород и его доставка в организме”:

1. Диффузия газов через дыхательную мембрану. Дыхательная мембрана

2. Емкость дыхательной мембраны. Диффузионная емкость для кислорода

3. Вентиляционно-перфузионный коэффициент. Парциальное давление кислорода и двуокиси углерода

4. Концепция физиологического шунта. Концепция физиологического мертвого пространства

5. Обмен кислорода в организме. Транспорт кислорода из легких в ткани

6. Транспорт кислорода артериальной кровью. Диффузия кислорода

7. Гемоглобин. Роль гемоглобина в транспорте кислорода

8. Коэффициент использования кислорода. Сохранение постоянства кислорода в тканях

9. Диссоциация оксигемоглобина и ее зависимость. Эффект Бора

10. Участие кислорода в метаболизме. Метаболическое потребление кислорода

Источник

Гемоглобин доставляет кислород не только в легкие

Одним из самых сложных процессов, что происходят в организме человека, несомненно, является дыхание. И сложность эта не только в танце легких, благодаря которому человек получает кислород, но и в процессах, с помощью которых этот кислород проникает дальше, в ткани, где превращается в углекислый газ, что отправляется в обратное путешествие. О данных процессах и пойдет речь далее.

Итак, приступим. Человек делает вдох, иии… Далеко не весь кислород поступает в легкие, а затем и в кровь. Часть вдыхаемого воздуха остается в так называемом мертвом пространстве. Мертвое пространство, в свою очередь, делится на анатомическое (дыхательные пути), в котором остается около 30 % вдыхаемого воздуха, и функциональное (вентилируемые, но по каким-то причинам не перфузируемые альвеолы).

Ухудшение альвеолярного газообмена может происходить при неглубоком и частом дыхании (причиной может стать перелом ребер, паралич дыхательной мускулатуры различного генеза и др.), а также при увеличении мертвого пространства, вызванном разнообразными причинами (нарушение перфузии альвеол в результате воспалительных заболеваний легких, удаление доли или целого легкого и др.), при снижении скорости кровотока по альвеолярным капиллярам (ТЭЛА, инфаркт легкого), при наличии диффузионного барьера (отек легких) и в результате ослабления альвеолярной вентиляции при обтурации просвета бронха. Газообмен между легкими и кровью происходит путем диффузии в соответствии с законом Фика. В легочных капиллярах она происходит за счет разности парциальных давлений в альвеолах и эритроцитах.

В альвеолах парциальное давление кислорода значительно превышает таковое для углекислого газа и составляет примерно 13,3 кПа (100 мм рт. ст.) и 5,3 кПа (40 мм рт. ст.) соответственно. Альвеолы омываются приносимой легочными артериями венозной кровью, в которой соотношение парциальных давлений этих двух газов обратно пропорционально и составляет приблизительно 5,3 кПа (40 мм рт. ст.) для кислорода и 6,1 кПа (46 мм рт. ст.) для углекислого газа. В среднем разница парциальных давлений составляет около 8 кПа (60 мм рт. ст.) для кислорода и около 0,8 кПа для углекислого газа.

Как уже было сказано выше, кислород путем диффузии проникает в кровь легочных капилляров. Диффузионное расстояние для кислорода при этом составляет 1–2 мкм, то есть именно на такое расстояние он проникает внутрь капилляра. Обмен крови в легочном капилляре происходит примерно за 0,75 секунды, но этого времени хватает на то, чтобы парциальные давления в альвеолах и в крови пришли в равновесие.

Кровь, в которой показатели парциального давления для кислорода и углекислого газа примерно равны таковым в альвеолах, называется артериализированной. Однако за счет наличия в легких артериовенозных шунтов и притока венозной крови из бронхиальных вен такой она остается недолго. В результате парциальное давление кислорода в аорте составляет примерно 12,0 кПа (как уже было сказано выше, парциальное давление в артериализированной крови равно таковому в альвеолах и составляет 13,3 кПа), а давление углекислого газа меняется незначительно и не приводит к затруднению его диффузии из крови в альвеолы.

Но кислород непосредственно в ткани попадает лишь в крайне незначительных количествах: для свободного перемещения по организму ему необходим транспортер. Эту функцию выполняет содержащийся в эритроцитах белок — гемоглобин. Гемоглобин существует в оксигенированной и неоксигенированной формах. В дезокси-гемоглобине железо находится на уровне порфиринового кольца и стабилизируется электростатическими силами, что обеспечивает поддержание всей структуры. Появившись, кислород начинает «тянуть» за железо, которое переносится на проксимальный гистидин на другом конце полипептидной цепи и меняет структуру всего протеина.

В результате гемоглобин переходит в оксигенированную форму, альфа- и бета-цепи при этом поворачиваются относительно друг друга на 15 градусов, облегчая присоединение остальных молекул кислорода. В итоге каждый из четырех содержащихся в нем атомов двухвалентного железа обратимо связывается с молекулой кислорода, что превращает молекулу гемоглобина в оксигемоглобин. По сравнению с миоглобином гемоглобин имеет низкое сродство к кислороду, однако оно не статично. Так, миоглобин может связывать кислород только одним участком, поэтому кривая его связывания — гипербола. Кривая связывания гемоглобина с кислородом имеет S-образную форму, демонстрируя, что при его связывании с первой молекулой кислорода гемоглобин имеет очень низкое сродство к кислороду, но при связывании последующих молекул кислорода сродство остальных его субъединиц к нему значительно увеличивается и в конечном счете повышается примерно в 500 раз.

Гемоглобин доставляет кислород не только в легкие

При этом альфа-цепи связывают кислород легче, чем бета-цепи. Этот процесс назван кооперативным взаимодействием. По мере снижения парциального давления кислорода в крови происходит его высвобождение из гемоглобина и поступление в ткани. Например, парциальное давление кислорода в работающих мышцах составляет всего 26 мм рт. ст, и при прохождении эритроцитов через капилляры, кровоснабжающие мышцы, происходит высвобождение и поступление в мышечные клетки примерно ⅓ всего переносимого гемоглобином кислорода. При повышении температуры тела также возрастает потребность в кислороде, что, в свою очередь, стимулирует высвобождение и поступление его в ткани. При снижении температуры, напротив, развивается гипоксия тканей, способствующая компенсаторному увеличению сродства гемоглобина к кислороду.

Гемоглобин также осуществляет перенос от тканей к легким продуктов тканевого дыхания — углекислого газа и ионов водорода. В ходе окислительных процессов в клетке выделяется углекислый газ, в результате гидратации которого образуются ионы водорода, что, в свою очередь, приводит к снижению рН. Давно известно, что снижение рН и повышение концентрации углекислого газа в крови оказывает сильное влияние на способность гемоглобина связывать кислород.

Гемоглобин доставляет кислород не только в легкие

В периферических сосудах показатели рН низкие, и по мере связывания гемоглобина с ионами водорода и углекислым газом происходит снижение его сродства к кислороду. Это влияние величины рН и концентрации углекислого газа на способность гемоглобина связывать кислород называют эффектом Бора.

Обратная ситуация имеет место в альвеолярных капиллярах, где присоединение кислорода к гемоглобину превращает тот в более сильную кислоту.

При этом сродство гемоглобина к углекислому газу снижается, а повышение кислотности гемоглобина приводит к высвобождению излишка ионов водорода и образованию в крови из бикарбоната угольной кислоты, которая затем распадается на воду и углекислый газ. В обоих случаях углекислый газ из крови поступает в альвеолы, а затем в атмосферу. Данный процесс назван эффектом Холдейна. Стоит отметить, что важную роль в образовании углекислого газа в эритроцитах играет ион хлора, поступающий в плазму крови в обмен на бикарбонат при участии белка-переносчика АЕ1. Данный процесс в англоязычной литературе получил название «Chloride shift» или «перенос Хамбургера».

На сродство гемоглобина к кислороду оказывает влияние и присутствующее в эритроцитах вещество, получившее название 2,3-бисфосфоглицерат (БФГ). Его образование — своего рода побочная реакция анаэробного гликолиза, происходящего в эритроцитах в ходе ферментативного превращения глюкозы в пируват под действием фермента бифосфоглицератмутазы. БФГ способен самостоятельно связываться с неоксигенированной формой гемоглобина, образуя солевой мостик между двумя его бета-субъединицами и снижая сродство к кислороду.

При этом гемоглобин способен связать только одну молекулу БФГ, а при присоединении кислорода БФГ вытесняется из полости. В обычных условиях в эритроцитах крови содержится достаточно большое количество БФГ, которое может увеличиваться в условиях гипоксии (например, у дайверов при погружении на глубину), а также при восхождении на большую высоту. В первые часы подъема концентрация БФГ в эритроцитах будет возрастать, а сродство кислороду снижаться. Но на большой высоте парциальное давление будет значительно ниже такового на уровне моря, а значит, оно снизится и в тканях. При этом БФГ будет облегчать передачу кислорода от гемоглобина к тканям.

Гемоглобин доставляет кислород не только в легкие

Некоторые вещества способны прочно связываться с гемоглобином или же вовсе менять его структуру. Одним из них является угарный газ, чье сродство к гемоглобину в 200 раз превышает таковое для кислорода. Отравления угарным газом часто происходят в помещениях с печным отоплением, при пожарах и авариях на производстве. Со временем кислород вытесняет угарный газ из гемоглобина, и в легких случаях пациенты помещаются под наблюдение и получают ингаляции с увлажненным кислородом. Необходимой мерой при тяжелых отравлениях угарным газом является переливание эритроцитарной массы.

К веществам, способным изменять структуру гемоглобина, относятся метгемоглобинобразователи — соединения, способные окислять двухвалентное железо в геме до трехвалентного. К ним относятся нитриты, нитраты, некоторые местные анестетики, аминофенолы, хлораты, примахин и некоторые сульфаниламиды. Состояние, характеризующееся появлением в крови окисленного гемоглобина, называют метгемоглобинемией. При высокой метгемоглобинемии капля крови, помещенная на фильтровальную бумагу, имеет характерный коричневый цвет, а при пропускании кислорода через пробирку с такой кровью ее цвет не меняется. Метгемоглобинемия выше 70 % от общего содержания гемоглобина часто приводит к гибели пациента еще до момента постановки диагноза.

Источники:

  1. Harrison’s hematology and oncology Longo, Dan L (Dan Louis), Third edition. New York : McGraw-Hill Education Medical, 2017.
  2. Наглядная физиология, С. Зильбернагль, А. Деспопулос, 2013.
  3. Ленинджер А. Основы биохимии: В 3-х т. Т. 1. /Д. Нельсон, М. Кокс ; Пер. с англ.-М.: БИНОМ: Лаборатория знаний, 2011.- 694 с.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник

Анонимный вопрос

7 января 2019  · 32,4 K

Гемоглобин связывает газы, находящиеся в крови и тем самым переносит их.

Это может быть кислород, который попадает в кровь с вдыхаемым воздухом, также как и ядовитый для человека – угарный газ.

От клеток к органам дыхания гемоглобин переносит углекислый газ, он является конечным продуктом обмена, который нужно вывести из организма посредством дыхательной системы.

Гемоглобин это пигмент эритроцитов, благодаря ему кровь имеет красный цвет.

Гемоглобин – сложный железосодержащий белок, содержится в красных кровяных тельцах (эритроциты), он обеспечивает весь организм кислородом. Недостаток гемоглобина вызывает головокружение, ломкость ногтей, анемию и т.д.

Гемоглобин играет очень важную роль в нашем организме, без него наш организм вряд ли сможет снабжать кислородом наиболее отдаленные части тела и органы, такие как руки и ноги, печень и прочие органы. Ну и кроме этого гемоглобин помогает выводить из нашего организма углерод, что тоже немаловажная функция. Подробнее обо всем этом можете вот тут… Читать далее

Как увеличить уровень гемоглобина,если не очень любишь мясо?

Здесь, чтобы ответить на интересные вопросы.

У меня тоже была эта проблема, из-за нехватки гемоглобина в крови очень плохо себя чувствовала, голова зачастую кружилась, в транспорте и 20 минут спокойно ездить не могла, так как начинало укачивать и сразу возникали боли в голове. Сходила к врачу, она прописала мне месячный курс Сорбифер Дурулеса (сульфат железа) для повышения уровня гемоглобина, и уже после первого месяца я начала чувствовать себя гораздо лучше, но и сейчас с перерывами в несколько месяцев принимаю Сорбифер Дурулес. Поэтому советую вам именно этот метод, помогает 🙂

Прочитать ещё 2 ответа

Почему у меня низкий гемоглобин?

психолог-консультант, бизнес-тренер, гештальт-терапевт, www.facebook.com/evgeny.yakovlev.3…  · vk.com/id186672748

UPD: вопрос когда-то был задан “Как поднять гемоглобин?”, на него и ответ ниже.

1) Если нет анемии (гемоглобин в пределах нормы), тогда просто приёмом препаратов железа. Но учитывая 4 вещи:

  1. Это незачем. 

Другое дело – как этап лечения анемии: там железо в циркулирующей крови восполняется в первую очередь, гемоглобин нормализуется, но для создания необходимого запаса показано месяца три ориентировочно ещё железо принимать. Именно как этап лечения под контролем врача и анализов – не только гемоглобина. 

  • А вопрос поставлен всё же именно о повышении самого гемоглобина.
  1. Есть риск перенасытить железом организм, называется гемосидероз, хорошего ничего.
  2. Большинство препаратов железа в таблетках/капсулах могут раздражать желудок. При лечении – понятно, а просто так – зачем это нужно счастье?
  3. Чем выше гемоглобин, тем железо усваивается меньше, и тем гемоглобин поднимается хуже.

2) Если есть анемия – к врачу, без вариантов. 

Да, скорее всего это именно железодефицитная анемия, но могут быть и другие формы. 

Кроме того, необходимо установить причину анемии. В женском варианте чаще всего причина банальна: потери железа с кровью при месячных/беременности/родах, которые недостаточно восполняются поступающим с пищей железом. Но могут быть и другие причины: скрытые потери крови из-за проблем в желудочно-кишечном тракте и пр. Исключить, и подумать о возможности сокращения менструальной кровопотери – если целесообразно. 

Повышение гемоглобина при помощи продуктов питания идёт гораздо медленнее, и нужно учитывать, что из растительной пищи (гранаты и пр.) железо усваивается совсем отвратно. Тогда уж мясо.

Препараты железа в/м или в/в – только по совсем особым показаниям, обычно когда гемоглобин совсем низкий, а повысить при этом надо совсем срочно.

Прочитать ещё 2 ответа

Какие пить препараты железа при низком гемоглобине?

Люблю моду, путешествия, детективы, английский язык.

Распространенными и популярными являются следующие препараты повышающие гемоглобин в крови: Гемобин, Тотема, Ферретаб, Феррум лек, Ферро-фольгамма, Сорбифер Дурулес, Гемофер капли, Мальтофер.

Прочитать ещё 1 ответ

Если в организме недостаток железа, то какие это влечет последствия?

Клиника Марины Рябус – смарт-косметология для людей со смарт-мышлением. Топовые процедуры…  · marinaryabus.ru

Катастрофические.

Просто перечислю функции железа –

участие в переносе кислорода, тканевом дыхании, перенос электронов в цепи цитохромов в митохондриях и участие в поцессах получения энергии, участие в деятельности ферментов печени цитохромов, репликвции ДНК, защите от вирусов и бактерий, синтезе гормонов щмтовидной железы, синтезе коллагена, кофактор ферментов 3 эиапов цикла Кребса или ЦТК.

Железо – это наше все!

Причем важно как гемовое (из мяса), так и негемовое железо (получаемое из растительных субстратов).

Последствия – слабость, вялость апатия, головоркужения, пониженная умственная деятельность, плохая работоспособность, частые ОРЗ, ОРВИ, хейлиты (заеды), стоматиты – это первая стадия.

Далее – выпадение волос, синдром познобления – зябкость, плохая переносимость холода, плохая заживляемость ран, склонность к кровоточивости, нарушения менструального цикла.

В глубоко зашедших стадиях возможна ранняя менопауза, отсутствие репродуктивной функции, множественные заболевания…

Прочитать ещё 3 ответа

Источник