Гемоглобин плода физиологическое значение
Гемоглобин – хромопротеид, окрашенный в красный цвет после присоединения к Fe++ кислорода. Состоит из белка глобина и простетической группы гема. В молекуле гемоглобина содержится одна молекула глобина и четыре молекулы гема. Гем имеет в своем составе атом двухвалентного железа, способный присоединить и отдать молекулу кислорода. Одна молекула гемоглобина присоединяет четыре молекулы кислорода. 1 гр гемоглобина присоединяет 1,34 мл кислорода. Содержание гемоглобина у мужчин 16,6 г в 100 мл крови (166 г/л), у женщин – 130 г/л.
Значение гемоглобина:
1) Выполняет роль переносчика О2 от лёгких к тканям.
2) Участвует в транспорте СО2 от клеток к лёгким.
3) Составляет гемоглобинную буферную систему и регулирует кислотно-основное состояние крови.
1. Эмбриональный вид гемоглобина — производится, уже начиная с первой недели развития эмбриона, но в завершении второго месяца вынашивания ребенка заменяется следующим видом.
2. Фетальный вид гемоглобина — это белок крови у плода. Он активно соединяет и затем переносит кислород по сравнению с аналогичным веществом в организме взрослого человека. В связи с этим ребенок в утробе матери и ещё некоторое время после появления на свет может переносить периоды недостатка кислорода намного лучше по сравнению со старшими родственниками. Фетальный вид активно производится в завершение трех месяцев беременности, но с течением времени заменяется следующей формой белка уже на протяжении первого года жизнедеятельности. У взрослого человека этот тип гемоглобина порой составляет от 1% до 1,5% от общего объема гемоглобина.
3. Нормальный вид гемоглобина — это белок, который преобладает у людей уже с четвертого года жизни.
4. Колориметрические способы — они активно реализуются на практике по причине их доступности и простоты.
5. Газометрические способы — происходит насыщение гемоглобина газом — окисью углерода или кислородом. По объему поглощаемого газа и можно рассуждать об объеме гемоглобина в крови.
6. Способы диагностики, которые основываются на выявлении содержания железа в молекуле гемоглобина. В связи с тем, что в состав гемоглобина входит определенный объем железа, то по его концентрации выявляется и объем гемоглобина.
Снижение уровня гемоглобина в крови происходит при малокровии разного происхождения — кровопотери, недостаток витамина В12, железа, фолиевой кислоты.
В эритроцитах взрослого человека гемоглобин составляет около 32 % от веса форменных элементов и в среднем 14 % от веса цельной крови (14 г на 100 г крови). Это количество гемоглобина приравнивается к 100 %. Содержание гемоглобина в эритроцитах новорожденных достигает 14,5 % нормы взрослого человека, что составляет 17–25 г гемоглобина на 100 г крови. В первые два года количество гемоглобина падает до 80–90 %, а затем снова возрастает до нормы. Относительное содержание гемоглобина с возрастом увеличивается и к 14–15 годам доходит до нормы взрослого. Оно равно (в граммах на 1 кг веса тела):
в 7–9 лет – 7,5;
10–11 лет – 7,4;
12–13 лет – 8,4;
14–15 лет – 10,4.
Роль белой крови в организме. Лейкоциты и их характеристика. Лейкопоэз и его регуляция . Возрастные изменения количества лейкоцитов
Лейкоциты – это клетки белой крови, основная задача которых – защита организма, лейкоциты – это основа иммунитета. Общее количество лейкоцитов в крови в среднем 4000 – 9000 в 1 мкл крови (4-9х109/л). Лейкоциты делятся на зернистые или гранулоциты (их ядро имеет зернистую структуру) и незернистые агранулоциты, ядро которых имеет незернистую структуру, эти виды лейкоцитов выполняют разные задачи.
1.Защитная. Благодаря движению клеток они могут проходить (мигрировать) через эндотелий капилляров (этот процесс называется диапедеза) и двигаться в направлении микробов, инородных тел, клеток на разных стадиях разрушения, комплексов антиген – антитело. По отношению к ним лейкоциты имеют положительный хемотаксис. Лейкоциты способны захватить чужеродные тела и с помощью специальных ферментов травить их. Этот процесс называется фагоцитозом. Один лейкоцит может захватить до 15-20 бактерий. Кроме того лейкоциты выделяют ряд важных для защиты организма веществ. К ним прежде всего относятся антитела, которые обладают антибактериальными и антитоксическим свойствами, вещества фагоцитарной активности.
2.Транспортная. В лейкоцитах есть целый ряд ферментов (протеазы, пептидазы, диастазы, липазы, дезоксирибонуклеазы), которые есть в лизосомальных мешочках и физиологически активных веществ (серотонин, гистамин, гепарин), которые есть в гранулах. Лейкоциты могут адсорбировать некоторые вещества и переносить их на своей поверхности.
3.Метаболическая. Лейкоциты способны синтезировать белки, гликоген, фосфолипиды.
4.Регенераторная. Лейкоциты выделяют Трофоний, которые способствуют образованию новых клеток.
Зернистые лейкоциты (гранулоциты) делятся на нейтрофилы, эозинофилы и базофилы. Нейтрофилы выполняют в организме функцию фагоцитоза – при проникновении в организм бактерий и вирусов они «проглатывают» их и растворяют – это так называемый клеточный иммунитет. Процессу фагоцитоза помогает выработка нейтрофилами фермента лизоцима и противовирусного вещества интерферона. В свою очередь нейтрофилы разделяются на зрелые формы (сегментоядерные нейтрофилы), не полностью зрелые (палочкоядерные) и совсем незрелые (юные). В общем анализе крови их принято писать по порядку, слева направо: юные – палочкоядерные – сегментоядерные. Поэтому и увеличение нейтрофилов может быть со сдвигом (увеличением той или иной их части) влево или вправо.
Эозинофилы выполняют функцию защиты от аллергии, они поглощают медиаторы – активные вещества, которые выделяются во время аллергической реакции, например, гистамин.
Основная функция базофилов – участие в иммунологических реакциях (в том числе и неадекватных, аллергических) замедленного типа.
Все лейкоциты образуются в красном костном мозге из единой стволовой клетки, однако родоначальницей миелопоэза является бипотенциальная колониеобразующая единица гранулоцитарно-моноцитарная (КОЕ-ГМ) или клетка-предшественница. Для ее роста и дифференцировки необходим особый колониестимулирующий фактор (КСФ), вырабатываемый у человека моноцитарно-макрофагальными клетками, костным мозгом и лимфоцитами.
КСФ является гликопротеидом и состоит из двух частей — стимулятора продукции эозинофилов (Эо-КСФ) и стимулятора продукции нейтрофилов и моноцитов (ГМ-КСФ), относящихся к ранним гемопоэтическим ростовым факторам. Выработка ГМ-КСФ стимулируется Т-хелперами и подавляется Т-супрессорами. На более поздних этапах на лейкопоэз влияют гранулоцитарный колониестимулирующий фактор — Г-КСФ (способствует развитию нейтрофилов) и макрофагальный колониестимулирующий фактор — М-КСФ (приводит к образованию моноцитов), являющиеся позднодействующими специфическими ростовыми факторами.
Установлено, что T-лимфоциты стимулируют дифференцировку клеток в гранулоцитарном направлении. В регуляции размножения ранних поли- и унипотентных клеток имеет важное значение их взаимодействие с Т-лимфоцитами и макрофагами. Эти клетки влияют на клетки-предшественницы с помощью лимфокинов и монокинов, содержащихся в мембране и отделяющихся от нее в виде «пузырьков» при тесном контакте с клетками-мишенями.
Из костного мозга и отдельных видов лейкоцитов (гранулоцитов и агранулоцитов) выделен комплекс полипептидных факторов, выполняющих функции специфических лейкопоэтинов.
Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и др.) являются факторами роста и дифференцировки Т- и В-лимфоцитов.
Выделяют следующие нарушения лейкопоэза:
1. усиление или угнетение образования лейкоцитов в гемопоэтической ткани.
2. нарушение созревания лейкоцитов в кроветворных органах.
3. продукция патологически изменённых лейкоцитов.
Нарушение лейкопоэза возникает при действии
· биологических (бактерии, вирусы),
· физических (УФ лучи, радиация)
· химических факторов.
К эндогенным факторам нарушения лейкопоэза относятся генетические дефекты образования и дифференцирования лейкоцитов.
Лейкоциты появляются в конце 3-го месяца внутриутробного развития, а на последней неделе беременности их число у плода выше, чем у взрослого человека. У новорожденного в первые часы после рождения их количество колеблется от 10 до 30 ×109/л. В течение 1-го, иногда 2-го дня жизни их число несколько увеличивается – это физиологический лейкоцитоз. Он обусловлен быстрой мобилизацией нейтрофилов из запасных пулов костного мозга в ответ на стресс при рождении. Состояние лейкоцитоза могут вызвать и внешние антигенные стимулы, с которыми сталкивается новорожденный. Это реактивный лейкоцитоз. В этих условиях поступают в циркуляцию молодые формы нейтрофилов. После этого число лейкоцитов снижается в 1-й год до 9-10 ×109/л и в 14-17 лет достигает уровня взрослых.
У недоношенных детей как при рождении, так и в последующие периоды число лейкоцитов несколько меньше, чем у доношенных.
Транспорт кислорода и диоксида углерода кровью. Гемоглобин плода (HbF) и его физиологическое значение.
Кровь осуществляет дыхательную функцию прежде всего благодаря наличию в ней гемоглобина. Физиологическая функциягемоглобина как переносчика кислорода основана на способности обратимо связывать кислород. Поэтому в легочных капиллярах происходит насыщение крови кислородом, а в тканевых капиллярах, где парциальное давление кислорода резко снижено, осуществляется отдача кислорода тканям. Гемоглобин человека содержит 0,335% железа. Каждый грамм-атом железа (55,84 г) в составе гемоглобина при полном насыщениикислородом связывает 1 грамм-молекулу кислорода (22400 мл). Таким образом, 100 г гемоглобина могут связывать
а каждый грамм гемоглобина 1,34 мл кислорода. Содержание гемоглобина в крови здорового человека составляет 1316%, т.е. в 100 мл крови 1316 г гемоглобина. При РО2 в артериальной крови 107120 гПа гемоглобин насыщен кислородом на 96%. Следовательно, в этих условиях 100 мл крови содержит 1920 об. % кислорода:
В венозной крови в состоянии покоя РО2 = 53,3 гПа, и в этих условиях гемоглобин насыщен кислородом лишь на 7072%, т.е. содержание кислорода в 100 мл венозной крови не превышает
Артериовенозная разница по кислороду будет около 6 об. %. Таким образом, за 1 мин ткани в состоянии покоя получают 200240 млкислорода (при условии, что минутный объем сердца в покое составляет 4 л). При взаимодействии молекулы кислорода с одним из четырех гемов гемоглобина кислород присоединяется к одной из половинокмолекулы гемоглобина (допустим, к α-цепи этой половинки). Как только такое присоединение произойдет, α-полипептидная цепь претерпевает конформа-ционные изменения, которые передаются на тесно связанную с ней β-цепь; последняя также подвергается конформационным сдвигам. β-Цепь присоединяет кислород, имея уже большее сродство к нему. Таким путем связывание одноймолекулы кислорода благоприятствует связыванию второй молекулы (так называемое кооперативное взаимодействие). После насыщения кислородом одной половины молекулы гемоглобина возникает новое, внутреннее, напряженное состояние молекулыгемоглобина, которое вынуждает и вторую половину гемоглобина изменить конфор-мацию. Теперь еще две молекулы кислорода, по-видимому, по очереди связываются со второй половинкой молекулы гемоглобина, образуя оксигемоглобин.
Организм располагает несколькими механизмами переноса СО2 от тканей к легким. Часть его переносится в физически растворенном виде. Растворимость СО2 в плазме крови в 40 раз превышает растворимость в ней кислорода, тем не менее при небольшой артериовенозной разнице РСО2 (напряжение СО2 в венозной крови, притекающей к легким по легочной артерии, равно 60 гПа, а в артериальной крови 53,3 гПа) в физически растворенном виде может быть перенесено в покое 1215 мл СО2, что составляет 67% от всего количества переносимого углекислого газа. Некоторое количество СО2 может переноситься в виде карбаминовой формы. Оказалось, что СО2 может присоединяться к гемоглобинупосредством карбаминовой связи, образуя карбгемоглобин, или карбаминогемо-глобин
Карбгемоглобин соединение очень нестойкое и чрезвычайно быстро диссоциирует в легочных капиллярах с отщеплением СО2. Количество карбаминовой формы невелико: в артериальной крови оно составляет 3 об. %, в венозной 3,8 об. % . В виде карбаминовой формы из ткани к легким переносится от 3 до 10% всего углекислого газа, поступающего из тканей в кровь. Основная масса СО2 транспортируется с кровью к легким в форме бикарбоната, при этом важнейшую роль играет гемоглобин эритроцитов.
Гемоглобин F это белок-гетеротетрамер из двух α-цепей и двух γ-цепей глобина, или гемоглобин α2γ2. Этот вариант гемоглобина есть и в крови взрослого человека, но в норме он составляет менее 1 % от общего количества гемоглобина крови взрослого и определяется в 1-7 % от общего числа эритроцитов крови. Однако у плода эта форма гемоглобина является доминирующей, основной. Гемоглобин F обладает повышенным сродством к кислороду и позволяет сравнительно малому объёму крови плода выполнять кислородоснабжающие функции более эффективно. Однако гемоглобин F обладает меньшей стойкостью к разрушению и меньшей стабильностью в физиологически широком интервале pH и температур. В течение последнего триместра беременности и вскоре после рождения ребёнка гемоглобин F постепенно в течение первых нескольких недель или месяцев жизни, параллельно увеличению объёма крови замещается «взрослым» гемоглобином А (HbA), менее активным транспортёром кислорода, но более стойким к разрушению и более стабильным при различных значениях pH крови и температуры тела. Такое замещение происходит вследствие постепенного снижения продукции γ-цепей глобина и постепенного увеличения синтеза β-цепей созревающими эритроцитами. Повышенное сродство к кислороду HbF определяется его первичной структурой: в γ-цепях вместо лизина-143 (β-143 лизин у HbA находится серин-143, вносящий дополнительный отрицательный заряд. В связи с этим молекула HbA менее положительно заряжена и основной конкурент за связь гемоглобина с кислородом − 2,3ДФГ (2,3-дифосфоглицерат) в меньшей степени связывается с гемоглобином, в этих условиях кислород получает приоритет и связывается с гемоглобином в большей степени
Образование гемоглобина у плода и новорожденного. Показатели в нормеГемопоэз — процесс, который поддерживает продукцию гемопоэтических клеток крови на протяжении всей жизни. Основным местом гемопоэза у плода является печень, в то время как на протяжении всей постнатальной жизни — костный мозг. Все гемопоэтические клетки образуются из полипотентных гемопоэтических стволовых клеток, которые являются ключевыми для нормального кровообразования; при их дефиците происходит недостаточность костного мозга, поскольку стволовые клетки требуются для продолжающегося замещения погибающих клеток. Число полипотентных стволовых клеток остаётся относительно постоянным на протяжении всей жизни, поскольку пул стволовых клеток поддерживается балансом между пролиферацией стволовых клеток и дифференциацией в более зрелые гемопоэтические клетки всех гемопоэтических линий дифференцировки. Гемопоэтические стволовые клетки от здоровых доноров используются для лечения детей с недостаточностью костного мозга (трансплантация стволовых клеток). Продукция гемоглобина у плода и новорождённогоНаиболее важное различие между гемопоэзом у плода по сравнению с постнатальной жизнью заключается в изменении принципа продукции Hb на каждой стадии развития. Первая формируемая глобиновая цепь — е-глобин, который практически немедленно дополняется а- и у-глобинами, которые экспрессируются с 4-5 нед гестации. Фетальный Hb (HbF) состоит из 2а- и 2у-цепей (2а2у) и является основным Нb в течение внутриутробной жизни. У него более высокая аффинность к кислороду, чем у Hb взрослого человека (HbA), которая позволяет ему экстрагировать и удерживать кислород, что является преимуществом в относительно гипоксической окружающей среде плода. Типы Hb у новорождённого, появившегося в срок: HbF, HbA и HbA2. HbF постепенно замещается HbA в течение первого года жизни. HbF и эмбриональный Hb в норме не определяются после периода младенчества, однако они продуцируются при врождённых нарушениях продукции Hb (гемоглобинопатиях) и определение их помогает в диагностике этих заболеваний. Гематологические показатели при рождении и в первые несколько недель жизни: • Запасы железа, фолиевой кислоты и витамина В12 у доношенных и недоношенных младенцев достаточные при рождении. Однако у недоношенных младенцев запасы железа и фолиевой кислоты ниже и снижаются быстрее, что приводит к недостаточности после 2-4 мес, если не осуществляется рекомендованный ежедневный приём. Гемоглобин при рождении: Примечание. Hb — гемоглобин; НbА — гемоглобин взрослого человека; HbF — фетальный гемоглобин. Схема обмена гемоглобина и билирубина – Также рекомендуем “Железодефицитная анемия у детей: клиника, диагностика, лечение” Оглавление темы “Болезни крови детей”:
|