Гемопротеины миоглобин и гемоглобин
- 2020
Способность связывать молекулу кислорода с гемовыми белками – это то, что имеет значение в обеих молекулах. Гемоглобин называется тетрамерным гемопротеином, а миоглобин называется мономерным белком. Гемоглобин систематически обнаруживается по всему телу, а миоглобин – только в мышечных тканях.
Гемоглобин изготовлен из белково-протезной группы и хорошо известен как переносчик кислородного пигмента. Это самая важная часть для поддержания жизни, так как она транспортирует кислород и углекислый газ по всему организму.
Миоглобин работает только на клетки мышц, получая кислород из эритроцитов и далее доставляя его к митохондриальной органелле клеток мышц. Впоследствии этот кислород используется для клеточного дыхания для создания энергии. В этой статье мы рассмотрим замечательные моменты, которые различают гемоглобин и миоглобин.
Сравнительная таблица
Основа для сравнения | Гемоглобин | Миоглобин |
---|---|---|
Количество цепей | Гемоглобин имеет 4 цепи двух разных типов – альфа и бета, дельта, гамма или эпсилон (в зависимости от типа гемоглобина). | Он содержит отдельные полипептидные цепи. |
Тип конструкции | Тетрамер | Мономер. |
Персональный | Связывает CO2, CO, NO, O2 и H +. | Связывается с O2, плотно и крепко. |
Их присутствие | Системно по всему телу. | В мышечных клетках. |
Типы кривой | Сигмовидная кривая связывания. | Гиперболическая кривая. |
Также известен как | Hb. | Миллибар |
Роль | Гемоглобин транспортируется вместе с кровью по всему телу и переносит кислород. | Миоглобин поставляет кислород только мышцам, что полезно во время голодания кислорода. |
Концентрация в крови | Высоко в РБК. | Низкий. |
Определение гемоглобина
Гемоглобин – это молекулы гемового белка, содержащиеся в эритроцитах, переносящие кислород из легких в ткани организма и возвращающие углекислый газ из тканей обратно в легкие.
Гемоглобин имеет меньшее сродство к связывающему кислороду, а его концентрация выше в эритроцитах (эритроцитах). Поэтому, когда кислород связывается с первой субъединицей гемоглобина, он превращается в четвертичную структуру белка и, таким образом, облегчает связывание других молекул.
В организме должен быть стандартный уровень Hb, который может варьироваться в зависимости от возраста и пола человека. Анемия – это состояние, при котором снижается уровень гемоглобина или эритроцитов в крови.
Структура гемоглобина
Гемоглобин содержит гемовую группу, которая является белком и удерживается нековалентно . Разница заключается в части глобина, которая имеет разное расположение аминокислот у разных животных.
« Гем » – это центральное железо, соединенное четырьмя пиррольными кольцами. Железо находится в форме иона трехвалентного железа, в то время как пиррольные кольца присоединены метиленовыми мостиками.
Глобин – белковая часть, представляет собой димер гетеродимера (альфа-бета), что означает, что четыре молекулы белка связаны, в которых могут присутствовать две альфа-глобулина и две другие цепи бета, дельта, гамма или эпсилон-глобулин, что зависит от тип гемоглобина. Эта цепь глобулина содержит «порфириновое» соединение, содержащее железо.
Гемоглобин (человек) состоит из двух альфа-субъединиц и двух бета-субъединиц, где каждая альфа-субъединица имеет 144 остатка, а бета-субъединица имеет 146 остатков. Помогает в транспортировке кислорода по всему организму.
Важность гемоглобина
- Придает цвет крови.
- Гемоглобин действует как носитель для переноса кислорода, а также углекислого газа.
- Он играет роль в метаболизме эритроцитов.
- Они действуют как физиологически активные катаболиты.
- Помогает в поддержании pH.
Типы гемоглобина
- Гемоглобин А1 (Hb-А1).
- Гемоглобин А2 (Hb-A2).
- Гемоглобин А3 (Hb-A3).
- Эмбриональный гемоглобин.
- Гликозилированный гемоглобин.
- Гетоглобин плода (Hb-A1).
Определение миоглобина
Миоглобин является разновидностью гемовых белков, служащих внутриклеточным хранилищем кислорода. Во время лишения кислорода связанный кислород, называемый оксимиоглобином, высвобождается из его связанной формы и далее используется для других метаболических целей.
Так как миоглобин имеет третичную структуру, которая легко растворяется в воде, в которой его свойства, которые экспонируются на поверхности молекул, являются гидрофильными, в то время как те молекулы, которые упакованы внутри молекулы, являются гидрофобными по природе. Как уже обсуждалось, это мономерный белок с молекулярной массой 16 700, что составляет одну четвертую от гемоглобина.
Структура миоглобина
Он состоит из не спиральных областей, от A до H, которые являются правосторонними альфа-спиралями, и 8 в количестве. Хотя структура миоглобина похожа на структуру гемоглобина.
Миоглобин также содержит белок под названием гем, который содержит железо и придает белкам красный и коричневый цвет. Он существует во вторичной структуре белка, имеющего линейную цепочку аминокислот. Он содержит одну субъединицу альфа-спиралей, а бета-листы и наличие водородной связи отмечают его стабилизацию.
Миоглобин помогает в транспортировке и хранении кислорода в мышечных клетках, который помогает во время работы мышц, обеспечивая их энергией. Кислород связывается с миоглобином более плотно, потому что венозная кровь объединяется прочнее, чем гемоглобин.
Миоглобин в основном содержится в мышцах, что полезно для организмов при дефиците кислорода. Киты и тюлени содержат большое количество миоглобина. Эффективность подачи кислорода ниже, чем у гемоглобина.
Важность миоглобина
- Миоглобин обладает сильным сродством к связыванию с кислородом, что позволяет ему эффективно хранить его в мышцах.
- Помогает организму в голодной ситуации с кислородом, особенно в анаэробной ситуации.
- Носите кислород к клеткам мышц.
- Также помогу в регулировании температуры тела.
Основные различия между гемоглобином и миоглобином
Обе молекулы обладают способностью связывать кислород, как обсуждалось выше, ниже приведены ключевые различия.
- Гемоглобин имеет четыре цепи двух разных типов – альфа и бета, гамма или эпсилон (в зависимости от типа гемоглобина) и образует структуру тетрамера, в то время как миоглобин содержит одну полипептидную цепь, так называемый мономер, хотя обе имеют центральный ион как железо и лиганд связываются как кислород.
- Гемоглобин связывается с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин связывается только с O2.
- Он поставляет гемоглобин вместе с кровью системно по всему телу, в то время как миоглобин поставляет кислород только мышцам .
- Гемоглобин, который также известен как Hb, присутствует в большем количестве в эритроцитах, чем миоглобин, также известный как Mb .
- Гемоглобин транспортируется вместе с кровью во все части тела, также помогает в транспортировке кислорода; Миоглобин обеспечивает кислород только для мышц, что полезно, когда в крови много кислорода.
сходства
Оба содержат железосодержащий белок в качестве центрального металла.
Оба являются глобулярным белком.
Оба имеют лиганд в виде кислорода (O2).
Вывод
Таким образом, мы можем сказать, что гемоглобин и миоглобин одинаково и физиологически важны из-за их способности связывать кислород. Это были первые молекулы, трехмерная структура которых была обнаружена с помощью рентгеновской кристаллографии. Нарушения в составляющих могут привести к серьезным заболеваниям и расстройствам.
Гемоглобин и миоглобин различаются по сродству связывания с кислородом. Но их центральный ион металла такой же, как и те же лиганд-связывающие молекулы. Они оба важны для тела, так как без них невозможно представить жизнь
Нет похожих сообщений.
Источник
ТОП 10:
Небелковый компонент | |
Нуклеопротеины Гликопротеины Липопротеины Флавопротеины Фосфопротеины Гемопротеины Протеогликаны Металлопротеины | РКН, ДНК, нуклеотиды (НАД, НАДФ) Углеводы, олигосахариды, моносахариды Липиды (ТАГ, ФЛ, Хол, Эхол) Флавиновые нуклеотиды (ФАД, ФМН) |
Гемопротеины: миоглобин и гемоглобин
Гемсодержащие белки имеют чрезвычайно важное биологическое значение. Одни участвуют в процессах связывания и транспорта кислорода, другие осуществляют транспорт электронов в дыхательной цепи, проявляют ферментативную активность и являются участниками антиоксидантной защиты организма.
Гемопротеины – это сложные белки, содержащие в качестве простетической группы, окрашенный в красный цвет гем – циклический тетрапиррол или протопорфирин, состоящий из 4-х пиррольных колец, соединенных метеновыми мостиками (=СН–) с образованием плоской кольцевой сопряженной системы, т. е. ароматической. Гем в молекулах гемоглобина и миоглобина содержит 2 винильных, 4 метильных и 2 пропионатные боковые цепи. В центре плоского кольца гема находится атом железа в ферросостоянии ( ), который образует четыре координационнные связи с азотами пиррольных колец, ещё две координационные связи возникают в плоскости перпендикулярной плоскости гема: пятая предназначена для связывания с полипептидной цепью (через азот пиридина), а шестая – для связывания физиологического лиганда – кислорода.
Основные гемсодержащие белки
Гемопротеиды | Биологические функции |
Гемоглобин ( ), Миоглобин ( ) | Акцепторы кислорода, способные обратимо связывать его. Миоглобин резервирует кислород, гемоглобин обеспечивает транспорт кислорода. Окисление в миоглобине и гемоглобине приводит к потере их биологической активности. |
Цитохромы ( / ) | В цитохромах происходит попеременное окисление и восстановление атома железа, определяющее функцию цитохромов – транспорт электронов. |
Хлорофиллсодержащие белки ( ) | Фотосинтез у растений. |
Каталаза ( ) | Фермент, катализирующий расщепление перекиси водорода: |
Витамин , цианкобаламин. Содержит – металлопорфирин. | Близок по структуре гему, необходим для нормального кроветворения. Единственный витамин, содержащий в своем составе кобальт. Синтезируется исключительно микроорганизмами. |
Триптофаноксигеназа (триптофанпирролаза), содержит . | Катализирует начальную стадию метаболических превращений незаменимой аминокислоты трипто- фана, приводящих к синтезу никотинамида, а затем и . |
Миоглобин
Характеристика структуры
· Миоглобин содержится в красных мышцах, относится к классу сложных белков, гемопротеинам, содержит белковую часть (апомиоглобин) и небелковую часть, простетическую группу – гем. Миоглобин является глобулярным белком, представлен одной полипептидной цепью, состоящей из 153 аминокислотных остатков.
· Молекула миоглобина имеет высокую степень α-спирализации: почти 75% остатков образуют 8 правых α-спиралей, которые обозначают латинскими буквами, начиная от N-конца цепи: А, В, С, Д, Е, F, G, Н.
· Пространственная 3-х мерная структура миоглобина имеет вид глобулы, образованной из α-спиралей за счет петель и изгибов цепи в области неспирализованных участков белка. В изгибах цепи находятся 4 остатка пролина.
· Внутренняя часть глобулы миоглобина защищена от воды, т. к. содержит, в основном, неполярные гидрофобные радикалы аминокислот, за исключением 2-х остатков гистидина, располагающихся в активном центре, т. е. они пространственно сближены, но принадлежат различным спиралям – (проксимальный гистидин), (дистальный гистидин).
· Гем располагается в гидрофобном «кармане» между спиралями F и Е. Четыре связи атома железа с атомами пиррольных колец, пятое координа ционное положение атома железа занято атомом азота проксимального гистидина (Гис ) в полипептидной цепи. Шестое координационное положение атома железа связано с молекулой кислорода, вблизи располагается дистальный гистидин (Гис ), который не имеет связи с гемом, но обеспечивает угловой присоединение кислорода (121˚).
· Пространственная структура белковой глобулы вокруг гема обеспечивает прочное, но обратимое связывание с кислородом и устойчивость железа к окислению ( в ).
· Биологическая функция миоглобина: он не способен транспортировать кислород, но зато эффективно его запасает в красных мышцах. В условиях кислородного голодания, например, при сильной физической нагрузке кислород высвобождается из оксигенированного миоглобина и поступает в митохондрии мышечных клеток, где осуществляется синтез АТФ (окислительное фосфорилирование).
Для миоглобина кривая адсорбции кислорода имеет форму гиперболы. Даже при низком парциальном давлении кислород в работающей мышце (20 мм рт. ст.) степень насыщения миоглобина кислородом составляет ~ 80%. Только при снижении рО2 до 5 мм рт. ст. (при кислородном голодании и тяжелой физической нагрузке) миоглобин легко отдает связанный кислород в митохондрии.
Гемоглобин
Отличие в структурах миоглобина и гемоглобина связано с тем, что гемоглобин имеет четвертичную структуру, которая наделяет его дополнительными свойствами, отсутствующими у миоглобина. Гемоглобин обладает аллостерическими свойствами (от греческого «аллос» – другой), его функционирование регулируется компонентами внутренней среды (кислород; ; ; 2,3-ДФГ), что способствует выполнению гемоглобином его важнейших биологических функций.
Дезоксигемоглобин имеет жесткую, напряженную структуру, стабилизированную солевыми связями между субъединицами, т. е. Т-состояние (от англ. tense – напряжённый); центры связывания О2 малодоступны, сродство к О2 низкое.
В отличие от миоглобина, который имеет трехмерную структуру, гемоглобины, находящиеся в эритроцитах, представляют собой тетрамерные белки, молекулы которых содержат различные типы субъединиц (α, β, γ).
НbА – основной гемоглобин взрослого человека, олигомер, содержащий 2α цепи (по 141 аминокислотному остатку в каждой цепи) и 2β цепи (по 146 остатков, составляет ~ 98% от общего количества гемоглобина. Молекула гемоглобина имеет четыре гема, т. е. 4 центра связывания О2.
Функции гемоглобина:
· Транспорт О2 из легких к периферическим тканям;
· Участие в транспорте СО2 и протонов от периферических тканей в легкие для последуюшего выведения из организма;
· Буферное действие. Гемоглобиновая буферная система наиболее мощная из буферных систем крови, препятствует закислению среды в тканевых капиллярах и подщелачиванию в легких.
Сходство и отличие структур миоглобина и гемоглобина А (НbА)
Пространственные структуры (вторичная и третичная) отдельных цепей гемоглобина и миоглобина имеют поразительное сходство, несмотря на различия в аминокислотной последовательности в полипептидных цепях.
Сходным является и расположение гема в гидрофобном «кармане» внутри белковой глобулы, его соединение с белком, а также расположение атома относительно плоскости гема.
Итак, важнейшие акцепторы О2 в организме человека – миоглобин и гемоглобин имеют сходную конформацию, которая, по-видимому, обеспечивает им возможность обратимо связывать О2 и устойчивость к окислению.
Связывание О2 сопровождается разрывом солевых связей между протомерами гемоглобина, что облегчает присоединение последующих молекул О2, т. к. центры связывания О2 открываются. Т-форма гемоглобина переходит в R-форму (relaxed – релаксированная), т. е. структура оксигемоглобина становится мягкой, сродство к О2 возрастает в 300 раз.
Сродство гемоглобинов к О2 характеризуется величиной – значением парциального давления О2, при котором наблюдается полунасыщение гемоглобина кислородом. Чем ниже Р50, тем выше сродство к О2. Благодаря уникальной структуре гемоглобин присоединяет О2 в легких при его высоком насыщении кислородом (около 100%) и легко отдает О2 в капиллярах тканей при более низком давлении О2.
Источник
Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым бе
Содержание:
- Главное отличие
- Гемоглобин против Миоглобина
- Сравнительная таблица
- Что такое гемоглобин?
- Типы
- Что такое миоглобин?
- Ключевые отличия
- Заключение
Главное отличие
Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым белком, который передает кислород только мышечным клеткам.
Гемоглобин против Миоглобина
Дыхание – это фундаментальный процесс жизни. Почти каждый организм нуждается в транспортировке кислорода ко всем клеткам своего тела для своего выживания. Гемоглобин и миоглобин – два основных глобиновых белка в живых организмах, которые связывают кислород и переносят их в клетки. Но между ними существует ряд различий. Гемоглобин переносит кислород из легких во все части или клетки организма позвоночных, а также некоторых беспозвоночных, в то время как миоглобин переносит кислород только в мышечные клетки. Гемоглобин состоит из 4 полипептидных цепей, в то время как миоглобин состоит из одной полипептидной цепи. Гемоглобин находится в кровотоке, а миоглобин – в мышечных клетках.
Сравнительная таблица
Гемоглобин | Миоглобин |
Гемоглобин является глобиновым белком, который переносит кислород из легких во все части тела. | Миоглобин является глобиновым белком, который переносит кислород к мышечным клеткам. |
Структура | |
Имеет тетрамерную структуру. | Имеет мономерную структуру. |
цепь | |
Он состоит из 4 цепочек двух разных типов, то есть альфа и бета, дельта, гамма или эпсилон (на основе типов различных типов гемоглобина). | Он состоит из одной полипептидной цепи. |
Место нахождения | |
Он расположен по всему телу. | Он расположен в мышечных клетках. |
Способность связывать | |
Обладает способностью связываться с CO2, NO, CO, O2 и H + | Имеет способность связываться с O2 |
Количество гемов | |
У него четыре гема, по одному в каждой из субъединиц | В миоглобине есть один гем |
Количество молекул кислорода | |
Четыре молекулы кислорода могут связываться с гемоглобином | Одна молекула кислорода связывается с миоглобином |
Молекулярный вес | |
Его молекулярный вес составляет 64 кДа. | Его молекулярная масса составляет 16,7 кДа. |
Сродство связывать с кислородом | |
Обладает низким сродством связываться с кислородом | Миоглобин обладает высокой способностью связываться с кислородом |
Концентрация в крови | |
Он имеет высокую концентрацию в эритроцитах | Имеет низкую концентрацию в крови |
кривая | |
Он показывает сигмовидную кривую связывания | Это показывает гиперболическую кривую |
Также известен как | |
Он также известен как Hb | Он также известен как Мб |
функция | |
Гемоглобин связывает кислород и транспортируется во все части тела через кровь. | Миоглобин передает кислород только мышечным клеткам, что обеспечивает помощь во время голодания кислорода. |
Что такое гемоглобин?
Гемоглобин является многосубъединичным глобиновым белком с четвертичной структурой и состоит из четырех полипептидных цепей, двух α и двух β субъединиц. Каждая альфа-цепь состоит из 144 остатков, а каждая бета-цепь состоит из 146 остатков. Противоположные субъединицы, такие как альфа и бета, ассоциируются сильнее, чем аналогичные субъединицы альфа-альфа или бета-бета. Это железосодержащий металлопротеин. В гемоглобине каждая из четырех субъединиц присоединена к небелковой протезной гем-группе, где молекула кислорода связывается. Таким образом, это означает, что гемоглобин может связывать четыре молекулы кислорода с четырьмя гем-группами в каждой цепи. Он имеет низкое сродство к кислороду в своем дезоксигенированном состоянии, но когда первая молекула кислорода связывается с гемоглобином, это приводит к изменению его структуры, что облегчает связывание других молекул кислорода. Этот процесс называется аллостерическим (через пространство) взаимодействием / кооперативностью. Гемоглобин обнаружен в избытке в эритроцитах и дает им красный цвет. Это вовлекает в транспортировку кислорода и углекислого газа к или от всех частей тела. Это также вовлекает метаболизм эритроцитов и также поддерживает pH крови.
Типы
- Гемоглобин А1 (Hb-А1).
- Гемоглобин А2 (Hb-A2).
- Гемоглобин А3 (Hb-A3).
- Эмбриональный гемоглобин.
- Гликозилированный гемоглобин.
- Гетоглобин плода (Hb-A1).
Что такое миоглобин?
Миоглобин представляет собой белок мономера глобина, который проявляет вторичную структуру. Он состоит из одной полинуклеотидной цепи, которая состоит из 153 остатков. Он имеет единственную группу heam, присоединенную к своей единственной полипептидной цепи. Таким образом, одна молекула кислорода может связываться с ним. Но его связывающая способность выше, чем у гемоглобина, поэтому он служит в качестве запасающего кислород белка, который высвобождается во время функционирования мышц. Он содержится в мышечных клетках и обеспечивает их кислородом по требованию. Помогает организму в голодных условиях кислорода, особенно в анаэробных условиях. Он также регулирует температуру тела. Миоглобин не имеет никакого типа.
Ключевые отличия
- Гемоглобин – это белок глобина, который переносит кислород из легких во все части тела, а миоглобин – это белок глобина, который переносит кислород только в мышечные клетки.
- Гемоглобин имеет тетрамерную структуру, в то время как миоглобин является мономером по структуре.
- Гемоглобин состоит из 4 полипептидных цепей, тогда как миоглобин состоит из одной полипептидной цепи.
- Гемоглобин присутствует в эритроцитах, а миоглобин – в мышцах
- Гемоглобин имеет четыре группы гемов, поэтому он может связывать четыре молекулы кислорода, но миоглобин имеет одну группу гемов, поэтому он может связывать одну молекулу кислорода, потому что гем-группа является местом связывания кислорода
- Гемоглобинм может связываться с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин может связываться только с O2.
- Гемоглобин имеет молекулярную массу 64 кДа, тогда как миоглобин имеет молекулярную массу 16,7 кДа.
- Гемоглобин имеет низкое сродство связываться с кислородом, в то время как миоглобин имеет высокое сродство связываться с кислородом.
- Гемоглобин участвует в транспортировке кислорода и углекислого газа ко всем частям тела, в метаболизме эритроцитов, а также поддерживает рН крови, в то время как миоглобин находится в мышечных клетках и обеспечивает их кислородом по мере необходимости, а также регулирует температура тела.
Заключение
Из вышеприведенного обсуждения делается вывод, что гемоглобин представляет собой тетрамер, состоящий из четырех полинуклеотидных цепей, и транспортирует кислород и диоксид углерода во все части тела, тогда как миоглобин представляет собой мономер, состоящий из одной нуклеотидной цепи, и транспортирует кислород к мышечным клеткам только по требованию. ,
Источник