Гены контролирующие синтез гемоглобина

Гены контролирующие синтез гемоглобина thumbnail

Гены гемоглобина человека

Кроме НbА, у человека есть еще пять других нормальных гемоглобинов, которые имеют тетрамерные структуры, сравнимые с НbА и состоящие из двух а- или а-подобных цепей и двух не-b-цепей. Гены а- и а-подобных цепей расположены тандемно в хромосоме 16, а для b- и b-подобных — в хромосоме 11. В каждой копии хромосомы 16 есть два идентичных гена а-глобина, названные а1 и а2. В пределах комплекса генов b-глобина существует тесная гомология между разными генами. Например, b- и q-глобины отличаются только 10 из 146 аминокислот. Все гены глобина, несомненно, возникли из общего гена-предшественнника.

Изменение экспрессии различных генов глобина в ходе развития иногда называют переключением глобинов. Это классический пример упорядоченного регулирования экспрессии генов в ходе развития. Гены в а- и b-группах размещаются в одной и той же транскрипционной ориентации и, что замечательно, гены внутри каждой группы расположены в той же последовательности, в которой они экспрессируются в процессе развития. Существует эквимолярное соответствие синтеза а- и b-подобных цепей глобина.

Интересно, что переключение синтеза глобинов по времени сопровождается изменениями в основном месте эритропоэза. Эмбриональный синтез глобина происходит в желточном мешке с 3 по 8 нед гестации, но приблизительно около 5 нед гестации основное место кроветворения начинает перемещаться из желточного мешка в печень плода. HbF (а2у2) — преобладающий гемоглобин в внутриутробном периоде — составляет приблизительно 70% общего гемоглобина при рождении, но во взрослой жизни HbF составляет менее 1% общего гемоглобина.

Хотя b-цепи могут обнаруживаться на ранних сроках гестации, их синтез становится значимым только ближе к сроку родов; к 3-месячному возрасту почти весь гемоглобин становится гемоглобином взрослого типа — HbА. Синтез 8-цепи также продолжается после рождения, но НbА2 (а2q2) никогда не составляет более примерно 2% гемоглобина взрослых. К несчастью, небольших количеств q-глобина (и, следовательно, HbA2) и у-глобина (и, следовательно, HbF), обнаруживаемых в норме в крови взрослого человека, недостаточно для компенсации сниженного количества b-глобина (и, следовательно, НbА), образующегося при болезнях типа b-талассемии. Следовательно, знание механизмов, регулирующих производство цепей глобина, потенциально имеет терапевтическое значение. Обнаружено множество факторов транскрипции, управляющих экспрессией генов глобина, что дает надежду на разработку лечения, направленного на увеличение синтеза q- и у-глобинов.

гены гемоглобина

Регулирование экспрессии генов b-глобина: управляющий регион локуса

Как и во многих других областях медицинской генетики, изучение механизмов, регулирующих экспрессию генов глобина, дало понимание как нормальных, так и патологических биологических процессов. Экспрессия гена b-глобина, как оказалось, только частично контролируется промотором и двумя энхансерами в фланговой ДНК, расположенной непосредственно рядом с геном. Необходимость дополнительных регулятор-ных элементов была заподозрена после идентификации уникальной группы пациентов, не имевших экспрессии ни одного гена в группе b-глобина, даже если сами гены (включая их индивидуальные регуляторные элементы) были неповрежденными. Оказалось, что такие пациенты имеют большие делеции выше комплекса b-глобина, удаляющие область приблизительно в 20 килобаз, названную локус-контролирующей областью (LCR, от англ. locus control region), которая начинается приблизительно в 6 килобазах выше гена е-глобина.

Развивающаяся при этом болезнь, еу5р-талассемия, описана ниже. Данные пациенты показали, что LCR необходим для экспрессии всех генов в группе b-глобина в хромосоме 11.

LCR определяется пятью сверхчувствительными к ДНКазе 1 участками, необходимыми для поддержки открытой конфигурации хроматина в данном локусе, что обеспечивает доступ факторам транскрипции к элементам, регулирующим экспрессию каждого гена в комплексе b-глобина. LCR вместе с ассоциированными связанными с ДНК белками, взаимодействует с генами локуса, формируя часть ядра, названную «транскрипционным узлом» (англ. active chromatin hub), в котором происходит экспрессия генов b-глобина.

Последовательное переключение экспрессии генов, происходящее между пятью участниками комплекса гена b-глобина в ходе развития, вызвано последовательной ассоциацией транскрипционного узла с разными генами в группе, так как узел перемещается от 5′-конца комплекса (от экспрессирующегося в эмбриональном периоде гена e-глобина) через ген q до гена b-глобина у взрослых.

Клиническое значение LCR разнообразно. Во-первых, пациенты с делециями LCR не экспрессируют гены группы b-глобина. Во-вторых, компоненты LCR, вероятно, окажутся существенными для генотерапии болезней группы b-глобина. В-третьих, знание молекулярных механизмов, лежащих в основе переключения глобинов, может сделать выполнимой, например, регуляцию экспрессии гена у-глобина у пациентов с b-талассемией (с мутациями в гене р-глобина), для стимуляции синтеза HbF (a2y2), — эффективного переносчика кислорода у взрослых с дефицитом НbА (а2b2).

Для понимания патогенеза большинства гемоглобинопатий важны различия в дозе генов (четыре гена а-глобина и два гена b-глобина на диплоидный геном) и онтогенез а- и b-глобинов. Мутации в генах b-глобина более вероятно вызывают болезнь, чем мутации а-цепи, поскольку мутация единственного гена b-глобина влияет на 50% р-цепей, тогда как мутация одного гена а-цепи влияет только на 25% a-цепей. С другой стороны, мутации в гене b-глобина не имеют последствий во внутриутробном периоде, поскольку у-глобин является основным глобином до рождения, и к моменту родов HbF составляет три четверти общего гемоглобина. Поскольку а-цепи — единственный а-подобный компонент всех гемоглобинов, начиная с 6 нед после зачатия, мутации а-глобина вызывают тяжелую патологию как плода, так и послеродовой жизни.

– Вернуться в содержание раздела “генетика” на нашем сайте

Оглавление темы “Выявление генов болезни”:

  1. Непараметрический анализ связи признаков (болезней) в генетике
  2. Оценка ассоциации гена с болезнью
  3. Геномные ассоциации и карта гаплотипов. Tag SNP
  4. Позиционное клонирование аутосомно-рецессивного заболевания. Гены муковисцидоза
  5. Позиционное клонирование многофакторного заболевания. Гены болезни Крона
  6. Гены возрастной дегенерации макулы. Особенности картирования
  7. Молекулярные болезни (патология). Биохимическая генетика
  8. Влияние мутации на функции белка. Примеры
  9. Структура и функция гемоглобина
  10. Гены гемоглобина человека

Источник

Молекулы гемоглобина- тетрамеры , содержащие по 2 пары гемоглобиновых цепей различного типа.

В ходе развития организма наблюдают образование различных вариантов Нв в зависимости от экспрессии разных глобиновых типов.

Различают:

1. Эмбриональный Нb – состоит из 2ζ(дзета) цепей и 2 ε(эпсилон)

2. Фетальный Нb – состоит из 2α(альфа) и 2γ (гамма)

3. Нb взрослых – состоит из 2α(альфа) и 2 β(бетта)

В течении 2 месяца беременности снижается синтез ζ и ε цепей, а усиливается синтез α и γ.- образуется фетальный гемоглобин.

На 3 месяце беременности активируются гены β и δ (дельта) цепей глобина, тогда как концентрация γ падает, это переключение ускоряется и фетальный гемоглобин заменяется на взрослый.

Преобладающим типом гемоглобина является гемоглобинА (α2β2), α и β цепи различаются по многим аминокислотным остаткам.

У всех взрослых помимо Нв-А, еще и Нв-А2 (α2δ2), характерная для А2 δ цепь отличается от β цепи только по 10 аминокислотным остаткам.

Около 1% фетального Нв может присутствовать и во взрослом организме.

γ цепь значительно отличается от α и β и обладает бОльшим сродством к кислороду, так как плод получает кислород через плаценту(но там содержание не высокое), поэтому фетальный Нв содержит γ цепь.

Известно 2 типа γ цепей:

1) С аланином

2) С глицерином в 136 положении.

Ζ цепи похожи по аминокислотному составу на α , а ε цепей на β.

Синтез γ цепей у эмбриона происходит в печени, селезенке и костном мозге.

Синтез β цепей происходит в костном мозге.

Все глобиновые цепи имеют общее эволюционное развитие, возникают в последствии дупликации генов и их дальнейшей модификации. Синтез небелковых гемогрупп также кодируется генами(т к они кодируют структуру ферментов обеспечивающих биосинтез гемма).

Глобиновые гены распологаются в 11 и 16 хромосомах. И образуют α и β подобные кластеры.

Α подобные кластеры располагаются в коротком плече 16 хромосомы, а β подобные кластеры в коротком плече 11 хромосомы

Структурные гены расположены в порядке от 5’ к 3’ концу.

Все глобиновые гены имеют по 3 экзона(информативные участки) и 2 интрона (неинформативные участки),интроны транскрибируются вместе с экзонами, поэтому они есть в первичном транскрипте.

Процессинг- созревание первичного транскрипта( интрены вырезаются, экзона сшиваются).

Гемоглобинопатии – это группа патологических состояний, обусловленные нарушениями структуры цепей глобина (заменой одной или нескольких аминокислот в цепи глобина, отсутствие участка цепи или ее удлинением.)

Существуют четыре основных типа болезней гемоглобина:

1. Гемолитические анемии, вызванные нестабильностью гемоглобина.

2. Метгемоглобинемии, обусловленные ускоренным окислением гемоглобина.

3. Эритроцитоз, вызванный нарушением сродства гемоглобина к кислороду.

4. Серповидно-клеточные нарушения как следствие повреждений клеточных мембран эритроцитов.

Гемолитические анемии. Они вызываются нестабильными формами гемоглобина. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Нестабильность может быть едва заметной, что не имеет никаких клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. Нестабильность часто обусловлена преждевременной диссоциацией гема и глобиновых цепей. Точный диагноз может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В таком случае необходимо выделение глобиновых цепей для дальнейшего анализа в специализированных лабораториях.

Метгемоглобинемия, обусловлена ускоренным окислением двухвалентного железа до трехвалентного. Больные с мутацией в α–цепи, вызывающими образование HbМ, страдают цианозом от рождения. При мутации в β-цепи цианоз развивается только через 6 месяцев после рождения, когда происходи замена γ–цепи на β-цепь.

Эритроцитоз, вызванный образованием гемоглобинов с нарушенным сродством к кислороду. Существует около 30 гемоглобинов с повышенным сродством к кислороду.

Повышенное сродство к кислороду приводит к уменьшению количества кислорода, освобождающегося из комплекса с гемом в тканях организма, и вызывает гипоксию. Гипоксия ведет к выделению гормона эритропоэтина, стимулирующего образование эритроцитов и собственно эритроцитоз.

Было обнаружено всего три гемоглобина с уменьшенным сродством к кислороду. При таком дефекте количество кислорода, поступающее в ткани, увеличивается, поэтому следует ожидать уменьшение синтеза эритропоэтина. В двух случаях, как и следовало ожидать, наблюдалась слабовыраженная анемия.

Серповидно-клеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа).

Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.

Больные серповидноклеточной анемией обладают повышенной (хотя и не абсолютной) врождённой устойчивостью к заражению различными штаммами малярийного плазмодия.

Симптомы серповидноклеточной анемии делятся на две основные категории. Из-за хрупкости красных клеток крови всегда наблюдается анемия, которая может привести к потере сознания, делает больного физически менее выносливым и может вызвать жел­туху (связанную с чрезмерным распадом гемогло­бина).

Источник

Молекулы гемоглобина- тетрамеры , содержащие по 2 пары гемоглобиновых цепей различного типа.

В ходе развития организма наблюдают образование различных вариантов Нв в зависимости от экспрессии разных глобиновых типов.

Различают:

1. Эмбриональный Нb – состоит из 2ζ(дзета) цепей и 2 ε(эпсилон)

2. Фетальный Нb – состоит из 2α(альфа) и 2γ (гамма)

3. Нb взрослых – состоит из 2α(альфа) и 2 β(бетта)

В течении 2 месяца беременности снижается синтез ζ и ε цепей, а усиливается синтез α и γ.- образуется фетальный гемоглобин.

На 3 месяце беременности активируются гены β и δ (дельта) цепей глобина, тогда как концентрация γ падает, это переключение ускоряется и фетальный гемоглобин заменяется на взрослый.

Преобладающим типом гемоглобина является гемоглобинА (α2β2), α и β цепи различаются по многим аминокислотным остаткам.

У всех взрослых помимо Нв-А, еще и Нв-А2 (α2δ2), характерная для А2 δ цепь отличается от β цепи только по 10 аминокислотным остаткам.

Около 1% фетального Нв может присутствовать и во взрослом организме.

γ цепь значительно отличается от α и β и обладает бОльшим сродством к кислороду, так как плод получает кислород через плаценту(но там содержание не высокое), поэтому фетальный Нв содержит γ цепь.

Известно 2 типа γ цепей:

1) С аланином

2) С глицерином в 136 положении.

Ζ цепи похожи по аминокислотному составу на α , а ε цепей на β.

Синтез γ цепей у эмбриона происходит в печени, селезенке и костном мозге.

Синтез β цепей происходит в костном мозге.

Все глобиновые цепи имеют общее эволюционное развитие, возникают в последствии дупликации генов и их дальнейшей модификации. Синтез небелковых гемогрупп также кодируется генами(т к они кодируют структуру ферментов обеспечивающих биосинтез гемма).

Глобиновые гены распологаются в 11 и 16 хромосомах. И образуют α и β подобные кластеры.

Α подобные кластеры располагаются в коротком плече 16 хромосомы, а β подобные кластеры в коротком плече 11 хромосомы

Структурные гены расположены в порядке от 5’ к 3’ концу.

Все глобиновые гены имеют по 3 экзона(информативные участки) и 2 интрона (неинформативные участки),интроны транскрибируются вместе с экзонами, поэтому они есть в первичном транскрипте.

Процессинг- созревание первичного транскрипта( интрены вырезаются, экзона сшиваются).

Гемоглобинопатии – это группа патологических состояний, обусловленные нарушениями структуры цепей глобина (заменой одной или нескольких аминокислот в цепи глобина, отсутствие участка цепи или ее удлинением.)

Существуют четыре основных типа болезней гемоглобина:

1. Гемолитические анемии, вызванные нестабильностью гемоглобина.

2. Метгемоглобинемии, обусловленные ускоренным окислением гемоглобина.

3. Эритроцитоз, вызванный нарушением сродства гемоглобина к кислороду.

4. Серповидно-клеточные нарушения как следствие повреждений клеточных мембран эритроцитов.

Гемолитические анемии. Они вызываются нестабильными формами гемоглобина. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Нестабильность может быть едва заметной, что не имеет никаких клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. Нестабильность часто обусловлена преждевременной диссоциацией гема и глобиновых цепей. Точный диагноз может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В таком случае необходимо выделение глобиновых цепей для дальнейшего анализа в специализированных лабораториях.

Метгемоглобинемия, обусловлена ускоренным окислением двухвалентного железа до трехвалентного. Больные с мутацией в α–цепи, вызывающими образование HbМ, страдают цианозом от рождения. При мутации в β-цепи цианоз развивается только через 6 месяцев после рождения, когда происходи замена γ–цепи на β-цепь.

Эритроцитоз, вызванный образованием гемоглобинов с нарушенным сродством к кислороду. Существует около 30 гемоглобинов с повышенным сродством к кислороду.

Повышенное сродство к кислороду приводит к уменьшению количества кислорода, освобождающегося из комплекса с гемом в тканях организма, и вызывает гипоксию. Гипоксия ведет к выделению гормона эритропоэтина, стимулирующего образование эритроцитов и собственно эритроцитоз.

Было обнаружено всего три гемоглобина с уменьшенным сродством к кислороду. При таком дефекте количество кислорода, поступающее в ткани, увеличивается, поэтому следует ожидать уменьшение синтеза эритропоэтина. В двух случаях, как и следовало ожидать, наблюдалась слабовыраженная анемия.

Серповидно-клеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа).

Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.

Больные серповидноклеточной анемией обладают повышенной (хотя и не абсолютной) врождённой устойчивостью к заражению различными штаммами малярийного плазмодия.

Симптомы серповидноклеточной анемии делятся на две основные категории. Из-за хрупкости красных клеток крови всегда наблюдается анемия, которая может привести к потере сознания, делает больного физически менее выносливым и может вызвать жел­туху (связанную с чрезмерным распадом гемогло­бина).

Источник

Эволюция генотипов гемоглобина как механизм адаптации к условиям существования

Функция дыхания у различных групп животных осуществляется неодинаково. Существует три основных механизма обеспечения организма кислородом.

  • 1. Малоактивные животные (простейшие, губки, кишечнополостные, некоторые черви, моллюски, ракообразные) обеспечиваются кислородом путем простой диффузии через поверхность тела.
  • 2. Высокоактивные животные, нуждающиеся в больших количествах кислорода, обладают соответствующими эффективными механизмами, обеспечивающими поступление кислорода в организм.
  • а) Насекомые и некоторые другие представители членистоногих обладают трахейной системой, пронизывающей все тело и доставляющей кислород непосредственно тканям и клеткам самых отдаленных от поверхности частей тела.
  • б) Транспорт кислорода к тканям при помощи дыхательных пигментов крови (позвоночные животные, некоторые черви) или гемолимфы (часть червей, ракообразных, моллюсков). У этой группы животных помимо органов дыхания, в которых происходит обмен газов, имеется сосудистая система, по которой движется кровь, вступая в контакт со всеми частями тела, и дыхательные пигменты, способные связывать кислород. Основным дыхательным пигментом, распространенным среди всех групп животных, является гемоглобин.

Эволюция гемоглобинов приматов подробно проанализирована Hill и соавторами в 1963—1964 гг. Гемоглобины различных животных обладают видовой специфичностью, обусловленной своеобразием строения белковой части молекулы.

Обезьяны Старого и Нового Света обладают гемоглобинами, очень сходными с человеческими. У макаки, например, (3-цепь отличается от таковой у человека всего одним остатком: в 87-м положении (тре — у человека, глу — у макаки). Несколько больше отличаются от человеческих гемоглобины африканских лори и других низших приматов, a-цепь в ходе эволюции оказалась гораздо более стабильной, чем другие цепи. Хотя и в (3-цепи аминокислоты с 30-й по 40-ю остаются неизменными во всех гемоглобинах приматов. Синтез четырех полипептидных цепей НЬ человека контролируется четырьмя генами, обозначаемыми по названию цепей а-, (3-, у- и 5-, которые обязательно присутствуют в гаплоидном наборе хромосом здорового человека. В большинстве популяций человека ген а-глобиновой цепи находится в дуплицированном состоянии.

На сегодняшний день хорошо изучена нуклеотидная последовательность всех глобиновых генов. Гены глобинов человека образуют мультигенные семейства и расположены на двух хромосомах в составе двух кластеров, a-кластер глобиновых генов (семейство ?- и a-генов) занимает 25 000 пар оснований и находится в коротком плече 16-й хромосомы. Семейство е-, у-, (3-, 8-генов ((3-кластер) располагается на коротком плече 11-й хромосомы на участке в 60 нуклеотидов (рис. 4.1).

Карта генов у-, б- и р-глобинов человека (по Л.Страйеру)

Рис. 4.1. Карта генов у-, б- и р-глобинов человека (по Л.Страйеру)

Гены в a-кластере расположены в следующем порядке (от 5’ к 3’): ген эмбриональной ?-цепи, псевдоген ?-цепи, псевдоген a-цепи и два идентичных гена а-цепи.

Расположение генов в (3-кластере следующее: ген эмбриональной е-цепи, два гена фетальных у-цепей, псевдоген (3-цепи, ген 8-цепи и ген (3-цепи. Порядок расположения этих генов совпадает с порядком их экспрессии в ходе онтогенеза. Все глобиновые гены имеют сходную функциональную организацию. Каждый из них имеет три кодирующие последовательности или три экзона. Между данными экзонами находятся две уникальные вставочные последовательности или интроны (IVS-1, IVS-2). Как известно, интроны транскрибируются вместе с экзонами и вырезаются в ходе процессинга для образования функциональной мРНК.

Очевидно, все а-, (3-, у-, б- и е-цепи возникли в ходе эволюции в результате дупликации и транслокации генов из единого исходного гемсодержащего белка, похожего на миоглобин.

В 1966 г. Fitch предположил, что исходный ген кодировал 88 аминокислот, а затем благодаря линейной неполной дупликации размер его увеличился до настоящих параметров.

Сравнительный анализ аминокислотных последовательностей различных гемоглобиновых полипептидов дает следующую схему филогенеза, протекавшего на основе дупликаций исходного гена и последующей дифференциации дуплицированных участков ДНК:

Гены контролирующие синтез гемоглобина

Вероятно, около 1100 млн лет назад произошла дупликация гена-предшественника, давшая начало миоглобиновым и гемо- глобиновым генам. Сходство первичной и высших структур миоглобина и глобиновых субъединиц очевидно (рис. 4.2).

Позднее, около 500 млн лет назад, на ранней стадии эволюции позвоночных произошла дупликация, давшая начало двум (а и (3) семействам глобиновых генов, сопровождавшаяся транслокацией.

Примерно 200 млн лет назад очередная дупликация привела к возникновению в семействе (3-глобиновых генов (3-глобинов плодов и взрослых. Около 100 млн лет назад произошло образование е- и у-глобиновых генов и, наконец, 40 млн лет назад появились 8- и (3-глобиновые гены.

Сравнение конформаций главной цепи миоглобина (а) и о.-цепи гемоглобина (б) (по Л. Страйеру)

Рис. 4.2. Сравнение конформаций главной цепи миоглобина (а) и о.-цепи гемоглобина (б) (по Л. Страйеру)

Источник