Элемент входящий в состав гемоглобина и связывающий кислород крови

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; KE van Holde & KG Ahern (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & C Chothia (1976), “Structural patterns in globular proteins”, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

Гемоцианин (от др.-греч. αἷμα — кровь и др.-греч. κυανoῦς — лазурный, голубой) — дыхательный пигмент из группы металлопротеинов, является медьсодержащим функциональным аналогом гемоглобина[1]. Встречается в крови моллюсков, членистоногих[2] и онихофор[3]. В пределах типа моллюсков гемоцианин широко распространён среди головоногих и некоторых брюхоногих. В пределах типа членистоногих — среди мечехвостов, ракообразных, паукообразных[4] и многоножек[5], а в 2003 году обнаружен и у представителя класса насекомых[6]. Следует отметить, что гемоцианин моллюсков и членистоногих различается по структуре и некоторым свойствам, кроме того, существуют гемоцианины, выполняющие иные функции помимо переноса кислорода тканям — не только (и не столько) дыхания, а прежде всего в процессах питания[2][7]. Так что можно говорить о гемоцианинах как о группе сходных металлопротеинов[2].

Восстановленная форма гемоцианина бесцветна. Окисленная форма окрашивается в голубой цвет, наблюдается флуоресценция[2].

История открытия и изучения[править | править код]

Уже в конце XVIII века было замечено, что кровь моллюсков имеет голубой цвет. В частности, это отмечал знаменитый французский естествоиспытатель Жорж Кювье (1795)[8].

В 1833 году венецианский химик Бартоломео Бицио (it:Bartolomeo Bizio) обнаружил медь в составе крови морских брюхоногих моллюсков семейства иглянок[9].

В 1878 году бельгийский физиолог Леон Фредерик (фр. Léon Fredericq) выделил голубой пигмент из крови осьминога Octopus vulgaris. Было отмечено, что при прохождении крови через жабры бесцветная кровь приобретала голубой цвет. Фредерик предположил, что это вещество переносит кислород к органам и тканям. Он же предложил название этого пигмента — «гемоцианин», по аналогии с гемоглобином (от др.-греч. κυανoῦς — лазурный, голубой). Фредерик выдвинул предположение, что гемоцианин — полный структурный и функциональный аналог гемоглобина, в котором медь включена в комплекс с порфириновым кольцом, аналогично гему гемоглобина[9][8].

В первой половине XX века были открыты различия в структуре гемоглобина и гемоцианина. В частности, было установлено, что гемоцианин не имеет порфиринового кольца. Предполагаемая простетическая группа гемоцианина была названа «гемокуприн»[8]. Позднее стало известно, что медь в субъединице гемоцианина связана непосредственно с белковыми цепями, и простетическая группа как таковая отсутствует[9][8].

Во второй половине XX века изучались различные уровни структуры гемоцианина, его свойства, различия гемоцианинов у различных видов. Исследовалась и генетическая последовательность гемоцианинов, на основе чего были выдвинуты новые предположения о родстве различных групп членистоногих и моллюсков. Изучается возможность применения гемоцианина в медицине[9].

Строение[править | править код]

Фотография молекул гемоцианина морского блюдечка (Megathura crenulata), полученная с помощью просвечивающего электронного микроскопа. Двойной стрелкой отмечены дидекамеры (2×10 субъединиц), одиночной — декамеры (1×10 субъединиц), также видны и более крупные структуры[10]

Субъединица гемоцианина членистоногих имеет молекулярный вес около 72 килодальтон и подразделяется на 3 домена, каждый из которых характеризуются разной третичной структурой: домен I содержит 5 или 6 альфа-спиралей, домен Il — 4 альфа-спирали и активный центр, домен III — антипараллельный бета-баррель (en:beta-barrel), состоящий из 7 бета-листов[11][12]. Молекулярный вес субъединицы гемоцианина моллюсков значительно выше, чем у членистоногих, и в среднем составляет 350—400 кДа[2], однако может достигать и 550 кДа[10]. Субъединица содержит 7 или 8 функциональных элементов. Каждый функциональный элемент подразделяется на 2 домена. Домен α содержит 4 альфа-спирали и активный центр, домен β — состоящий из 7 Β-листов антипараллельный бета-баррель[13]. Таким образом, α-домен и β-домен гемоцианина моллюсков функционально соответствуют доменам II и III гемоцианина членистоногих.

Строение активного центра одинаково у гемоцианинов членистоногих и моллюсков. Он содержит два близко расположенных друг к другу катиона меди, которые обратимо связывают молекулу кислорода в комплекс. Каждый катион меди координирован тремя имидазольными группами (гистидиновыми остатками), при оксигенации молекула кислорода оказывается зажатой между этими катионами. Пептидная цепь образует петли, то приближаясь к активному центру, то удаляясь от него, самая большая петля (разделяющая гистидиновые остатки His204 и His324) состоит из 119 аминокислотных остатков[14].

Уровни структуры гемоцианина членистоногих и моллюсков. Цифрами I, II, III и буквами α, β обозначены домены

В неокисленной форме катионы меди находятся в степени окисления +1, отстоят друг от друга на расстояние 4,6 Å, химическое связывание между ними отсутствует. Конфигурация N—Cu—N близка к треугольной, расстояния Cu—N находятся в пределах 1,9—2,1 Å. При оксигенации ионы меди приобретают степень окисления +2. Катионы меди сближаются друг с другом и расстояние Cu—Cu составляет 3,6 Å, а расстояния Cu—O — 1,8—1,9 Å. В результате сближения ионов меди углы N—Cu—N приближаются к тетраэдрическим. Кроме того, связи Cu—N становятся неравными по длине: в окружении каждого иона две связи имеют длину 1,9—2,0 Å, а третья связь удлиняется до 2,3 Å[14].

Субъединица гемоцианина представляет собой комплекс меди и белка. В отличие от гемоглобина, атомы металла связаны непосредственно с аминокислотой, а не с простетической группой[15].

Мономер гемоцианина членистоногих состоит из 6 субъединиц и имеет октаэдрическую форму. У членистонигих гемоцианин представлен в виде мономеров (1×6), димеров (2×6), тетрамеров (4×6), гексамеров (6×6) и октамеров (8×6)[2][4].

Субъединица гемоцианина моллюсков, как уже отмечалось, состоит из 7 или 8 активных центров, в отличие от гемоцианина членистоногих, субъединица которого имеет лишь один активный центр. Форма молекулы напоминает полый цилиндр[2]. Гемоцианин у моллюсков может быть представлен в виде декамеров (1×10) и дидекамеров (2×10), однако нередко соединяется в очень большие ансамбли[2]. Так, молекулы гемоцианина виноградной улитки могут достигать молекулярной массы свыше 9 миллионов дальтон, являясь одним из самых больших органических соединений[16]. Такие большие размеры гемоцианина позволяют лучше проявляться его кооперативным свойствам.

В 2002 году гемоцианин был обнаружен у представителя типа онихофор[3]. По строению это вещество аналогично гемоцианину членистоногих[3].

Физиология[править | править код]

Строение деоксигенированного и оксигенированного активного центра гемоцианина

Гемоцианин, как и гемоглобин, проявляет кооперативность, то есть при присоединении молекулы кислорода одной субъединицей увеличивает сродство к кислороду соседних субъединиц. Кооперативность гемоцианина моллюсков сравнительно невелика (коэффициент Хилла составляет около 2), кооперативность гемоцианина членистоногих значительно выше (значение коэффициента Хилла может достигать 9)[2].

В отличие от гемоглобина, входящего в состав эритроцитов, молекулы гемоцианина растворены в гемолимфе[2]. Благодаря этому мономеры гемоцианина могут объединяться в очень большие комплексы, что позволяет лучше проявляться его кооперативным свойствам и в целом лучше переносить кислород. Это особенно важно для организмов, живущих в условиях с малым содержанием кислорода. Содержание гемоцианина в гемолимфе моллюсков колеблется от 1—3 % у хитона en:Cryptochiton stelleri до 11 % у осьминога Octopus vulgaris[17]. Содержание в гемолимфе ракообразных также варьирует у разных видов в довольно широких пределах, от 3 до 10 %[18]. При хронической гипоксии концентрация гемоцианина в гемолимфе значительно растёт, компенсируя нехватку кислорода в воде[18]. Анализ содержания гемоцианина в крови морских ракообразных может использоваться для наблюдения за состоянием окружающей среды[18].

На профиль связывания кислорода значительно влияет содержание ионов в гемолимфе и pH-фактор[19][20]. Установлено, что изменение температуры тела членистоногих приводит к изменению pH-фактора гемолимфы. Рост температуры на 10 градусов уменьшает pH на 0,3[19][20]. Таким образом, через изменения pH гемолимфы членистоногие адаптируют способность к переносу кислорода и кооперативные свойства гемоцианина к условиям среды[2]. Исследования показали, что почти весь гемоцианин камчатского краба, живущего в воде с температурой +1…+5°, находится в неокисленной форме, в то время как гемоцианин тарантула Eurypelma californicum, живущего в пустынях юго-запада США при температурах от +30°, оксигенирован более чем на 90 %[2][21].

Гемоцианин может связываться не только с кислородом, но и с угарным газом, образуя карбоксигемоцианин. При этом также обнаруживается кооперативный эффект[22].

Синтез гемоцианина у брюхоногих моллюсков осуществляется поровыми клетками соединительной ткани. У головоногих моллюсков местом синтеза гемоцианина являются стенки жаберных сердец[23].

Гемопоэз членистоногих изучен более подробно. Специализированные органы кроветворения у них отсутствуют, отдельные очаги кроветворения могут находиться в соединительной ткани и в стенках кровеносных сосудов. У ракообразных синтез гемоцианина осуществляется особыми клетками крови — цианоцитами, развивающимися из цианобластов. Зрелые цианоциты выделяют гемоцианин в гемолимфу[24]. У мечехвостов очаги кроветворения представляют собой разобщённые группы гемоцитов в соединительной ткани и синусных пространствах, там же из них формируются цианоциты, аналогичные цианоцитам ракообразных[25][26].

Другие функции гемоцианинов[править | править код]

Гемоцианин может выступать не только в качестве переносчика кислорода, но и выполнять другие функции.

Иногда гемоцианины выполняют функции тирозиназы — фермента, катализирующего окисление тирозина. В составе таких гемоцианинов отсутствуют аминокислоты, препятствующие подходу фенолов к активным центрам фермента. Следует отметить, что гемоцианины и тирозиназы имеют общее происхождение и разделились около 700 миллионов лет назад. Хелицеровые, такие как пауки и скорпионы, могут катализировать синтез меланина с помощью гемоцианина[27]. Можно предположить существование подобного механизма и у других членистоногих, а также моллюсков. У некоторых паукообразных имеется сразу два вида гемоцианинов. Один задействован в переносе кислорода, а другой катализирует окисление тирозина[2].

У некоторых ракообразных обнаружено близкое к гемоцианину соединение, названное криптоцианин (англ. cryptocyanin). Криптоцианин утратил способность связывать кислород и является структурным белком, управляющим процессами линьки ракообразных[28].

В организме насекомых присутствует белок гексамерин. Предполагается, что он произошёл от гемоцианина, однако утратил атомы меди и, как следствие, способность связывать кислород[29]. Гексамерин насекомых служит в качестве резерва питательных веществ[29]. Интересно отметить, что в 2003 году гемоцианин — переносчик кислорода обнаружен и у насекомого — веснянки Perla marginata. При этом структура этого гемоцианина отличается от гемоцианина остальных членистоногих — его субъединица содержит два активных центра и, соответственно, 4 атома меди[6].

Эволюция гемоцианинов[править | править код]

Гемоцианины как членистоногих, так и моллюсков происходят от тирозиназ[30]. Однако их эволюционный путь в этих типах животных различается. На первом этапе эволюции гемоцианина членистоногих произошла дупликация гена тирозиназы (или подобного ей фермента), благодаря чему появился белок, имеющий 2 атома меди и способный связывать кислород. Впоследствии этот белок приобрёл способность к полимеризации, что было важно для проявления кооперативных свойств[31]. Гемоцианин моллюсков прошёл через 3 дупликации гена, в результате чего субъединица гемоцианина моллюсков содержит 8 активных центров[31]. Гемоцианины членистоногих и моллюсков имеют значительные различия как по четвертичной структуре, так по своей генетической последовательности. Это позволяет предположить, что они возникли в этих группах независимо друг от друга[30].

Расхождение гемоцианинов хелицеровых и ракообразных произошло около 600 миллионов лет назад. Гемоцианин хелицеровых имеет достаточно консервативную структуру. Дивергенция гемоцианина паукообразных от остальных хелицеровых произошла 550—450 миллионов лет назад. Возраст дивергенции гемоцианинов высших раков (Malacostraca) и гексамеринов насекомых оценивается в 430—440 миллионов лет. Расхождение гемоцианинов внутри группы ракообразных началось гораздо позже, около 200 миллионов лет назад. Криптоцианины десятиногих раков (Decapoda), не выполняющие функции переносчиков кислорода, отделились от основной линии примерно 215 миллионов лет назад. Время дивергенции гемоцианинов в различных группах членистоногих может свидетельствовать в пользу теории общего происхождения шестиногих и высших раков[32][29][33]. Можно отметить тенденцию к уменьшению количества мономеров гемоцианина в субъединице в процессе эволюции[30].

Открытый в 2002 году гемоцианин онихофор отделился от общей ветви членистоногих раньше, чем началась дивергенция внутри группы членистоногих, тем не менее эти гемоцианины имеют общее происхождение[3].

Изучение эволюции гемоцианинов позволило уточнить родственные отношения различных групп членистоногих и моллюсков[29].

Использование[править | править код]

Изучается возможность применения гемоцианина в медицине как компонента противоопухолевых вакцин. При образовании конъюгатов с опухолевыми антигенами он существенно повышает их иммуногенность. Этот адъювант способствует преодолению иммунологической толерантности или усиливают иммунный ответ на ганглиозидные антигены (GM2, GD2, GD3). Обнаружен высокий уровень Т-клеточного иммунного ответа при использовании конъюгатов гемоцианина с муцином[34][35]. Предполагается, что они также могут применяться в технологии получения дендритных вакцин. Проводятся клинические исследования противоопухолевых вакцин с использованием этого адъюванта совместно с идиотипическими антителами при В-клеточной лимфоме и антиидиотипическими антителами при колоректальной карциноме[36][37].

Примечания[править | править код]

  1. ↑ У глубоководных голотурий (Echinodermata) кровь также не красная, а голубая — в ней вместо железа содержится ванадий.
    Справочник химика
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Heinz Decker, Nadja Hellmann, Elmar Jaenicke, Bernhard Lieb, Ulrich Meissner, and Jürgen Markl. Minireview: Recent progress in hemocyanin research (англ.) // Integrative and Comparative Biology. — 2007. — Vol. 47, no. 4. — P. 631—644.
  3. 1 2 3 4 Kristina Kusche, Hilke Ruhberg, and Thorsten Burmester. A hemocyanin from the Onychophora and the emergence of respiratory proteins (англ.) // Proc Natl Acad Sci USA. — 2002. — Vol. 99, no. 16. — P. 10545—10548.
  4. 1 2 Jürgen Markl. Hemocyanins in spiders (англ.) // Journal of Comparative Physiology. — 1980. — Vol. 140, no. 3. — P. 199—207. (недоступная ссылка)
  5. Elmar Jaenicke, Heinz Decker, Wolfgang Gebauer, Jürgen Markl and Thorsten Burmester. Identification, Structure, and Properties of Hemocyanins from Diplopod Myriapoda (англ.) // The Journal of Biological Chemistry. — 1999. — Vol. 274. — P. 29071–29074.
  6. 1 2 Silke Hagner-Holler et al. A respiratory hemocyanin from an insect (англ.) // Proc Natl Acad Sci. — 2004. — Vol. 101, no. 3. — P. 871—874.
  7. ↑ Справочник химика
  8. 1 2 3 4 J. Leiden Webb. Magnetic properties of Hemocyanin (англ.) // California Institute of Technology : Доклад. — 1940. — P. 971—972.
  9. 1 2 3 4 A. Ghiretti-Magaldi and F. Ghiretti. The pre-history of hemocyanin. The discovery of copper in the blood of molluscs (англ.) // Cellular and Molecular Life Sciences. — 1992. — Vol. 48, no. 10. — P. 971—972. (недоступная ссылка)
  10. 1 2 Bernhard Lieb, Wolfgang Gebauer, Christos Gatsogiannis, Frank Depoix, Nadja Hellmann, Myroslaw G Harasewych, Ellen E Strong and Jürgen Markl. Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550 kDa polypeptide (англ.) // Frontiers in Zoology. — 2010. — Vol. 7, no. 14.
  11. Volbeda A, Hol W. Crystal structure of hexameric hemocyanin from Panulirus interruptus refined at 3.2Å resolution (англ.) // J Mol Biol. — 1989. — Vol. 209. — P. 249—279.
  12. Magnus K, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol W. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences (англ.) // Proteins. — 1994. — Vol. 19. — P. 302—309.
  13. Cuff M, Miller K, van Holde K, Hendrickson W. Crystal structure of a functional unit from Octopus hemocyanin (англ.) // J Mol Biol. — 1998. — Vol. 278. — P. 855—870.
  14. 1 2 Яценко А. В. Комплексные соединения в процессах дыхания живых существ (рус.).
  15. Bonaventura C. and Bonaventura J. The Mollusca Volume 2. — New York: Academic Press, 1983. — С. 26—29.
  16. Бриттон Г. Биохимия природных пигментов. — Москва: Мир, 1986. — С. 177. — 422 с. — 3050 экз.
  17. Michael E. Q. Pilson. Variation of hemocyanin concentration in the blood of four species of Haliotis (англ.) // The Biological Bulletin. — 1965. — Vol. 128. — P. 459—472.
  18. 1 2 3 Brouwer Marius, Denslow Nancy. Molecular Indicators of Dissolved Oxygen Stress in Crustaceans (англ.) : Доклад. — 2003.
  19. 1 2 Monod J, Wyman J, Changeux J. On the nature of allosteric transitions: a plausible model (англ.) // J Mol Biol. — 1965. — No. 12. — P. 88–118.
  20. 1 2 Robert C, Decker H, Richey B, Gill S, Wyman J. Nesting: hierarchies of allosteric interactions (англ.) // Proc Natl Acad Sci USA. — 1987. — No. 84. — P. 1891—1895.
  21. Sterner R, Vogl T, Hinz HJ, Penz F, Hoff R, Foll R, Decker H. Extreme thermostability of tarantula hemocyanin (англ.) // FEBS Lett. — 1995. — Vol. 364, no. 1. — P. 9-12.
  22. Richey B, Decker H, Gill SJ. Binding of oxygen and carbon monoxide to arthropod hemocyanin: an allosteric analysis (англ.) // Biochemistry. — 1985. — Vol. 24, no. 1. — P. 109-117.
  23. Житенева Л. Д., Макаров Э. В., Рудницкая О. В. Эволюция крови. — Ростов-на-Дону: Азовский научно-исследовательский институт рыбного хозяйства (АзНИИРХ), 2001. — 104 с.
  24. Gupta A. P. Arthropod Phylogeny. — New York: Van Nostrand Reinhold Company, 1979. — С. 717—724. — 735 с.
  25. Raymond F. Sis, Don H. Lewis, Tom Caceci. The Hemocytes and Hemopoietic organs of a Penaeid Shrimp (Penaeus vannamei) (англ.) : Доклад. — 1987.
  26. A. Ghiretti-Magaldi, C. Milanesi and G. Tognon. Hemopoiesis in crustacea decapoda: origin and evolution of hemocytes and cyanocytes of Carcinus maenas (англ.) // Cell Differentiation. — 1977. — Vol. 6, no. 3-4. — P. 167—186. (недоступная ссылка)
  27. Heinz Decker and Thomas Rimke. Tarantula Hemocyanin Shows Phenoloxidase Activity (англ.) // The Journal of Biological Chemistry. — 1998. — Vol. 273, no. 40. — P. 25889–25892.
  28. N. B. Terwilliger, M. C. Ryan and D. Towle. Evolution of novel functions: cryptocyanin helps build new exoskeleton in Cancer magister (англ.) // Journal of Experimental Biology. — 2005. — Vol. 208. — P. 2467—2474.
  29. 1 2 3 4 Thorsten Burmester, Klaus Scheller. Common Origin of Arthropod Tyrosinase, Arthropod Hemocyanin, Insect Hexamerin, and Dipteran Arylphorin Receptor (англ.) // Journal of Molecular Evolution. — 1996. — Vol. 42, no. 6. — P. 713—728. (недоступная ссылка)
  30. 1 2 3 Anupam Nigam, Jimmy Ng, and Trustin Ennacheril. The Molecular Evolution of Arthropod & Molluscan Hemocyanin. Evidence for Apomorphic origin and convergent evolution in oxygen binding sites (англ.). — 1997. — Vol. 41. — P. 199—228.
  31. 1 2 van Holde K. E., Miller K. I. Hemocyanins (англ.) // Adv Protein Chem. — 1995. — No. 47. — P. 66—68.
  32. Thorsten Burmester. Molecular Evolution of the Arthropod Hemocyanin Superfamily (англ.) // Molecular Biology and Evolution. — 2001. — No. 18. — P. 184—195.
  33. C. P. Mangum, J. L. Scott, R. E. Black, K. I. Miller, and K. E. Van Holde. Centipedal hemocyanin: its structure and its implications for arthropod phylogeny (англ.) // Proc Natl Acad Sci USA. — 1985. — Vol. 82, no. 11. — P. 3721—3725.
  34. Soo Kie Kim, Govindaswami Ragupathi, Musselli C. et al. Livingston comparison of the effect of different immunological adjuvants on the antibody and T-cell response ot immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines (англ.) // Vaccine. — 1999. — Vol. 18, no. 12. — P. 597—603.
  35. Р. Н. Степаненко, Р. Я. Власенко, Ю. Е. Цветков, Е. А. Хатунцева, Е. М. Новикова, И. К. Вернер, Н. Э. Нифантьев, Р. В. Петров. Гуморальный иммунный ответ мышей на конъюгат синтетических углеводных фрагментов опухольассоциированного антигена ганглиозной природы с белком гемоцианином — прототип противоопухолевой вакцины (рус.) // Иммунология. — 2010. — № 2. Архивировано 23 сентября 2010 года.
  36. Hsu FJ, Caspar CB, Czerwinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial (англ.) // Blood. — 1997. — Vol. 89. — P. 3129—3135.
  37. Birebent B, Koido T, Mitchell E et al. Anti-idiotypic antibody (Ab2) vaccines: coupling of Ab BR3E4 to KLH increases humoral and/or cellular immune responses in animals and colorectal cancer patients (англ.) // J Cancer Res Clin Oncol. — 2001. — Vol. 127. — P. 27—33.

Литература[править | править код]

  • Алякринская И. О. Гемоглобины и гемоцианины беспозвоночных. — Москва: Наука, 1979. — 155 с.
  • Житенева Л. Д., Макаров Э. В., Рудницкая О. В. Эволюция крови. — Ростов-на-Дону: Азовский научно-исследовательский институт рыбного хозяйства (АзНИИРХ), 2001. — 104 с.
  • Стид Дж. В., Этвуд Дж. Л. Супрамолекулярная химия. — Москва: Академкнига, 2007. — 896 с. — ISBN 978-5-94628-303-8.
  • Яценко А. В. Комплексные соединения в процессах дыхания живых существ (рус.).
  • Heinz Decker, Nadja Hellmann, Elmar Jaenicke, Bernhard Lieb, Ulrich Meissner, and Jürgen Markl. Minireview: Recent progress in hemocyanin research (англ.) // Integrative and Comparative Biology. — 2007. — Vol. 47, no. 4. — P. 631—644.
  • Van Holde K. E., Miller K. I. Hemocyanins (англ.) // Adv Protein Chem. — 1995. — No. 47. — P. 1—81.
  • Bernhard Lieb, Benjamin Altenhein and Jürgen Markl. The Sequence of a Gastropod Hemocyanin (HtH1 from Haliotis tuberculata) (англ.) // The Journal of Biological Chemistry. — 2000. — Vol. 275. — P. 5675—5681.
  • C. P. Mangum, J. L. Scott, R. E. Black, K. I. Miller, and K. E. Van Holde. Centipedal hemocyanin: its structure and its implications for arthropod phylogeny (англ.) // Proc Natl Acad Sci USA. — 1985. — Vol. 82, no. 11. — P. 3721—3725.

Источник