Эритроциты и гемоглобин биология

Эритроциты и гемоглобин биология thumbnail

Эритроци́ты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), также известные под названием красные кровяны́е тельца́ — клетки крови позвоночных животных (включая человека) и гемолимфы некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома[1], и некоторых двустворчатых моллюсков[2]). Они насыщаются кислородом в лёгких или в жабрах и затем разносят его (кислород) по телу животного.

Цитоплазма эритроцитов богата гемоглобином — пигментом красного цвета, содержащим двухвалентный атом железа, который способен связывать кислород и придаёт эритроцитам красный цвет.

Человеческие эритроциты — очень маленькие эластичные клетки дисковидной двояковогнутой формы диаметром от 7 до 10 мкм. Размер и эластичность помогают им при движении по капиллярам, их форма обеспечивает большую площадь поверхности, что облегчает газообмен. В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Около 2,4 миллиона новых эритроцитов образуется в костном мозге каждую секунду[3]. Они циркулируют в крови около 100—120 дней и затем поглощаются макрофагами. Приблизительно четверть всех клеток в теле человека — эритроциты[4].

Функции[править | править код]

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2—3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом 2-валентного железа, кислород обратимо координируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы 1[en], содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 H+ + HCO3-

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорид-аниона (хлоридный сдвиг).

Формирование эритроцитов[править | править код]

Формирование эритроцитов (эритропоэз) происходит в красном костном мозге тазовых костей, черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни эритроцита — 3—4 месяца, разрушение (гемолиз) происходит в печени и селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (БОЕ-Э), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (КОЕ-Э).

Колониеобразующая единица эритроцитов (КОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: диаметр 20—25 мкм, крупное (более 2/3 всей клетки) ядро с 1—4 чётко оформленными ядрышками, ярко-базофильная цитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для эритробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: диаметр 10—20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • Базофильный нормоцит. Отличительные признаки: диаметр 10—18 мкм, лишённое нуклеол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базохроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормоцит. Отличительные признаки: диаметр 9—12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормоцит. Отличительные признаки: диаметр 7—10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: диаметр 9—11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулум. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с диаметром 7—8 мкм, не имеющий ядра и ДНК (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита. Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях. Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки.

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность к реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Гемопоэз (в данном случае эритропоэз) исследуется по методу селезёночных колоний, разработанному Э. Маккаллохом[en] и Дж. Тиллом[en].

Структура и состав[править | править код]

Размеры и форма эритроцитов широко варьируют среди позвоночных. Лишённые ядра эритроциты млекопитающих имеют наименьшие размеры. Почти столь же малы имеющие ядро эритроциты птиц. У остальных групп позвоночных они заметно крупнее.

Зрелые эритроциты птиц имеют ядро, однако в крови взрослых самок папуанского пингвина с очень низкой частотой встречаются и безъядерные красные кровяные тельца (B).

У большинства групп позвоночных эритроциты имеют ядро и другие органеллы.

У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства органелл. Ядра выбрасываются из клеток-предшественников в ходе эритропоэза. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин. У некоторых животных (например, верблюдов) эритроциты имеют овальную форму.

Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Эритроциты (красные кровяные тельца) человека

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Мембрану пронизывают трансмембранные белки — гликофорины, которые благодаря большому количеству остатков N-ацетилнейраминовой (сиаловой) кислоты ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеиновой природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус-фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы — 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре). У человека диаметр эритроцита составляет 6,2 — 8,2 мкм[5], толщина — 2 мкм, объём — 76—110 мкм³[6].

Содержание эритроцитов в крови:[источник не указан 1611 дней]

  • у мужчин — 3,9 — 5,5⋅1012 на литр (3,9—5,5 млн в 1 мм³),
  • у женщин — 3,9 — 4,7⋅1012 на литр (3,9—4,7 млн в 1 мм³),
  • у новорождённых — до 6,0⋅1012 на литр (до 6 млн в 1 мм³),
  • у пожилых людей — 4,0⋅1012 на литр (менее 4 млн в 1 мм³).

Переливание крови[править | править код]

При переливании крови от донора к реципиенту возможна агглютинация (склеивание) эритроцитов, а также гемолиз (их разрушение). Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером в 1900 году. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита, — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). В системе AB0, сформулированной Яном Янским в 1907 году, выделяются 4 группы крови, для каждой из которых характерны различные антигены и антитела. Переливание обычно проводится лишь между обладателями одной группы крови.

I — 0II — AIII — BIV — AB
αββα

Место в организме[править | править код]

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 см/мин, что даёт им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне. У человека в 1 мм³ крови содержится 3,9—5,5 млн эритроцитов, у некоторых копытных — значительно больше (у лам — 15,4 млн, у коз — 13 млн), у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс. Общее число эритроцитов снижается при анемиях, повышается при истинной полицитемии.

Средняя продолжительность жизни эритроцита человека — 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается), у собак — 107 дней, у домашних кроликов и кошек — 68.

Патология[править | править код]

Эритроциты человека:

  1. нормальные — двояковогнутые;
  2. нормальные, вид с ребра;
  3. в гипотоническом растворе, разбухшие (сфероциты);
  4. в гипертоническом растворе, съёжившиеся (эхиноциты)

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную, сферическую или мишеневидную форму.

Изменение формы эритроцитов называется пойкилоцитозом[en]. Сфероцитоз (сферическая форма эритроцитов) наблюдается при некоторых формах наследственной анемии. Эллиптоциты (эритроциты овальной формы) встречаются при мегалобластной и железодефицитной анемии, талассемиях и других заболеваниях. Акантоциты и эхиноциты (эритроциты шиповатой формы) встречаются при поражениях печени, наследственных дефектах пируваткиназы и др. Мишеневидные эритроциты (кодоциты) — это клетки с бледной тонкой периферией и центральным утолщением, содержащем скопление гемоглобина. Встречаются при талассемиях и других гемоглобинопатиях, интоксикации свинцом и др. Серповидные эритроциты — признак серповидноклеточной анемии. Встречаются и другие формы эритроцитов[7].

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Среднее содержание гемоглобина для мужчин — 13,3—18 г% (или 4,0—5,0⋅1012 единиц), для женщин — 11,7—15,8 г% (или 3,9—4,7⋅1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Примечания[править | править код]

  1. ↑ Вестхайде В., Ригер Р. (ред.) Зоология беспозвоночных (в двух томах). Том 1: от простейших до моллюсков и артропод. М., КМК, 2008
  2. Ansell, A. D.; N. Balakrishnan Nair. Occurrence of Haemocoelic Erythrocytes containing Haemoglobin in a Wood Boring Mollusc (англ.) // Nature : journal. — 1968. — Vol. 217, no. 5126. — P. 357—357. — doi:10.1038/217357a0.
  3. Erich Sackmann. Biological Membranes Architecture and Function: Handbook of Biological Physics / ed. R. Lipowsky and E. Sackmann. — Elsevier, 1995. — Т. 1.
  4. Pierigè F., Serafini S., Rossi L., Magnani M. Cell-based drug delivery (англ.) // Advanced Drug Delivery Reviews (англ.)русск. : journal. — 2008. — January (vol. 60, no. 2). — P. 286—295. — doi:10.1016/j.addr.2007.08.029. — PMID 17997501.
  5. Mary Louise Turgeon. Clinical Hematology: Theory and Procedures (англ.). — Lippincott Williams & Wilkins (англ.)русск., 2004. — P. 100.
  6. McLaren C. E., Brittenham G. M., Hasselblad V. Statistical and graphical evaluation of erythrocyte volume distributions (англ.) // American Physiological Society (англ.)русск. : journal. — 1987. — April (vol. 252, no. 4 Pt 2). — P. H857—66. — PMID 3565597.
  7. ↑ Пойкилоцитоз

Литература[править | править код]

  • Афансьев Ю. И. Гистология, цитология и эмбриология / Е. А. Шубикова. — 5-е издание. — М.: «Медицина», 2002. — 744 с. — ISBN 5-225-04523-5.
  • Глушен С. В. Цитология и гистология. Курс лекций. — Мн., 2003.

Ссылки[править | править код]

  • Физиология человека: Функции клеток крови. Эритроциты.
  • [dic.academic.ru/dic.nsf/medic2/30931 Нормоциты]
  • Кроветворение
  • Гемопоэз
  • Красные кровяные тельца // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • dic.academic.ru/dic.nsf/medic2/30931

Источник

1.5 Эритроциты, гемоглобин

Эритроциты – безъядерные клетки, основной функцией которых является обеспечение газообмена. 95% массы эритроцитов составляет гемоглобин. Содержание эритроцитов в периферической крови колеблется около 5 млн в 1 мкл. У женщин содержание эритроцитов примерно на 10% ниже, чем у мужчин. Размеры эритроцитов: диаметр 7-8 мкм, объём 85-90 мкм3, площадь поверхности 145 мкм2. Основным источником энергии в эритроцитах является глюкоза, которая на 90% окисляется в ходе анаэробного гликолиза. Энергия расходуется на восстановление текучести мембраны, остаточной деформации, работу ионных насосов, синтез глютатиона в реакциях восстановления, защищающих эритроциты от окислительной денатурации. Синтезируемый в эритроцитах 2,3-дифосфоглицерат (2,3-ДФГ) регулирует (уменьшает) сродство гемоглобина к кислороду, что ускоряет процесс отдачи кислорода. Продолжительность жизни эритроцита 60-90, максимально 120 дней. Разрушение происходит, в основном, макрофагами селезёнки и костного мозга, купферовскими клетками печени (внутриклеточный, внесосудистый гемолиз). После отщепления от гемоглобина гем превращается в желчный пигмент билирубин и поступает в кишечник. Частично всасывается, частично выводится из организма в виде стеркобилина (кал) и уробилина (моча). Железо используется для повторного синтеза гемоглобина. Гемоглобин связывается в крови с белком гаптоглобином, этот комплекс в дальнейшем фагоцитируется купферовскими клетками печени.

Подсчет числа эритроцитов.

Кровь разводится 3% раствором хлорида натрия в 200 раз. Заполняется камера Горяева, под микроскопом подсчитывают число эритроцитов в 5 больших квадратах, расположенных по диагонали счетной камеры. Расчет по формуле :

Эритроциты и гемоглобин биология (2).

X – число эритроцитов;

А – число эритроцитов в 5 больших квадратах (= 80 маленьких);

200 – разведение;

1/4000 мм3 – объём части камеры над 1 маленьким квадратиком;

А/80 – среднее арифметическое число эритроцитов в маленьком квадрате.

Гемоглобин.

Гемоглобин – хромопротеид, окрашенный в красный цвет после присоединения к Fe++ кислорода. Состоит из белка глобина и простетической группы гема. В молекуле гемоглобина содержится одна молекула глобина и четыре молекулы гема. Гем имеет в своем составе атом двухвалентного железа, способный присоединить и отдать молекулу кислорода. Одна молекула гемоглобина присоединяет четыре молекулы кислорода. 1 гр гемоглобина присоединяет 1,34 мл кислорода. Содержание гемоглобина у мужчин 16,6 г в 100 мл крови (166 г/л), у женщин – 130 г/л.

Значение гемоглобина:

1) Выполняет роль переносчика О2 от лёгких к тканям.

2) Участвует в транспорте СО2 от клеток к лёгким.

3) Составляет гемоглобинную буферную систему и регулирует кислотно-основное состояние крови.

Виды гемоглобина

В период внутриутробного развития зародыша (7-12 недель) эритроциты содержат примитивный гемоглобин (HbP), на 9-й неделе появляется гемоглобин фетальный HbF, а перед рождением – гемоглобин взрослых (HbА). Фетальный гемоглобин в течение первого года жизни ребенка полностью заменяется на HbА. Примитивный и фетальный гемоглобины обладают более высоким сродством к кислороду, что обеспечивает его насыщение кислородом при более низком парциальном давлении.

Соединения гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

1) Восстановленный, или дезоксигемоглобин (Hb). Имеет 4 свободных связи, к которым могут присоединяться лиганды – кислород, угарный газ.

2) Оксигемоглобин (HbО2). Образуется из восстановленного гемоглобина присоединением кислорода.

3) Карбгемоглобин (HbСО2). Образуется в тканях после присоединения к гемоглобину углекислого газа.

Примерно 8-9% гемоглобина в крови находится в виде соединения метгемоглобин (MetHb). Метгемоглобин образуется в результате взаимодействия со свободными радикалами. Железо в метгемоглобине находится в трехвалентной форме, поэтому метгемоглобин не способен взаимодействовать с кислородом.

При отравлениях угарным газом образуется карбоксигемоглобин (HbСО). Обладает высоким сродством к кислороду, поэтому при небольших концентрациях угарного газа в крови гемоглобин блокируется и теряет способность транспортировать кислород.

Определение содержания гемоглобина в крови

Пипеткой набирают 20 мм3 крови и смешивают с 0,1 нормальным раствором соляной кислоты, налитым в среднюю пробирку гемометра Сали. После образования солянокислого гематина – соединения, имеющего интенсивный коричневый цвет, в пробирку по каплям прибавляют дистиллированную воду до уравновешивания цвета раствора в средней пробирке с цветом эталонных растворов. По нанесенной на пробирку шкале по уровню полученного раствора определяют концентрацию гемоглобина.

Гемолиз эритроцитов, виды гемолиза.

Гемолиз – это массивное внутрисосудистое разрушение эритроцитов с выходом свободного гемоглобина в плазму. Гемоглобин начинает выделяться почками, что повреждает нефрон. Виды гемолиза:

1. Осмотический.

2. Химический.

3. Механический.

4. Термический.

5. Биологический.

Причины гемолиза в организме:

1. Переливание несовместимой крови.

2. Сепсис, влияние гемолитических микроорганизмов.

3. Попадание в организм гемолитических ядов.

4. Отравление различными органическими и минеральными веществами.

Опасность гемолиза заключается в развитии комбинированного шока, а в последующем – острой и хронической почечной недостаточности.

Скорость оседания эритроцитов.

При стоянии крови, не свёртывающейся вследствие добавления антикоагулянтов, наблюдается оседание эритроцитов. СОЭ в норме равна у мужчин 1-10 мм/ч, у женщин – 2-15 мм/ч. На СОЭ влияют главным образом свойства плазмы (содержание крупномолекулярных белков – фибриногена и глобулинов), а также размеры и форма эритроцитов. При воспалительных и онкологических заболеваниях скорость оседания эритроцитов возрастает в связи с повышенной способностью эритроцитов образовывать агрегаты. На скорость оседания эритроцитов влияет белковый состав плазмы. СОЭ уменьшается при увеличении содержания альбуминов и возрастает при увеличении концентрации фибриногена, гаптоглобина, липопротеидов, иммуноглобулинов.

Эритроциты и гемоглобин биология

Рис. Клетки периферической крови человека.

1 – эритроциты, 2- лимфоциты, 3- моноциты, 4 – нейтрофильные гранулоциты, 5 – эозинофильные гранулоциты, 6 – базофильные гранулоциты, 7 – тромбоциты.

1.6 Лейкоциты, их виды и физиологическое значение

Лейкоциты содержатся в периферической крови в концентрации 4-9 ´ 109 /л. Увеличение количества лейкоцитов называется лейкоцитозом, снижение – лейкопенией. Причиной лейкопении являются токсические и радиационные воздействия на организм. Лейкоцитоз может развиваться у здорового человека при мышечной работе, во время сильных эмоций, после приёма пищи, у женщин при беременности. Патологический лейкоцитоз характерен для инфекционных и воспалительных заболеваний и обеспечивает повышение реактивности организма. Определение числа лейкоцитов имеет большое диагностическое заболевание.

Группы лейкоцитов:

Раздел: Биология
Количество знаков с пробелами: 59923
Количество таблиц: 3
Количество изображений: 1

… Осмотическое давление крови Это давление, обусловленное растворенными в жидкой части крови осмотически активными веществами (ионами, белками). Оно определяет транспорт воды из внеклеточной среды организма в клетки и наоборот. В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гипертонические растворы. Изотонические растворы имеют суммарную …

… ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ (два занятия) Занятие 1-е ПРИРОДА ВОЗБУЖДЕНИЯ 1.Что называют раздражимостью и возбудимостью? 2.Каково соотношение понятий раздражимость и возбудимость? Какие ткани в физиологии называют возбудимыми,какие- невозбудимыми? 3.Клетки каких тканей организма являются возбудимыми и невозбудимыми? 4.Дайте определение понятию “раздражитель”. 5.Назовите два вида …

а­ют под мио­ген­ным ме­ха­низ­мом ре­гу­ля­ции.Пе­ре­чис­ли­те орга­ны,для ко­то­рых этот вид ре­гу­ля­ции яв­ля­ет­ся важ­ным. 6.Пе­ре­чис­ли­те ос­нов­ные осо­бен­но­сти гу­мо­раль­ной ре­гу­ля­ции функ­ций. 7.Пе­ре­чис­ли­те осо­бен­но­сти нерв­ной ре­гу­ля­ции по срав­не­нию с гу­мораль­ной. 8.На­зо­ви­те ви­ды влия­ний нерв­ной сис­те­мы на ор­га­ны,по­яс­ни­те их сущ­ность. 9.При …

… избыток кислот и щелочей. При некоторых состояниях организма наблюдается смещение реакции крови в кислую сторону (ацидоз) или в щелочную сторону (алкалоз). 2.2. Форменные элементы крови
К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты. Эритроциты возникли в процессе эволюции как клетки, содержащие дыхательные пигменты, которые осуществляют перенос кислорода и диоксида …

Источник