К ферментам относится гемоглобин

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; KE van Holde & KG Ahern (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & C Chothia (1976), “Structural patterns in globular proteins”, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

Оглавление

  1. Введение
  1. Клеточное железо:

–  Гемоглобин

–    Миоглобин

–  Цитохромы

– Цитохромоксидаза

–    Каталаза 
– Пероксидаза

– флавопротеиновые
ферменты

3. Внеклеточное 
железо 

4. Заключение

5. Список литературы

Железо, находящееся в организме человека, можно
разбить на 2 большие группы клеточное и внеклеточное. Соединения
железа в клетке, отличающиеся различным
строением, обладают характерной только
для них функциональной активностьюи
биологической ролью для организма. В
свою очередь их можно подразделить на
4 группы:

 
1. гемопротеины, основным структурным 
элементом которых является гем 
(гемоглобин, миоглобин, цитохромы, 
каталаза, ипероксидаза)

 
2. железосодержащие ферменты негеминовой 
группы (сукцинат-де-гидрогеназа, ацетил – коэнзим А – дегидрогеназа, НАДН
,- цитохромС-редуктаза и др.)

 
3. ферритин и гемосидерин внутренних 
органов

 
4. железо, рыхло связанное с белками 
и другими органическими веществами

Ко второй группе внеклеточных
соединений железа относятся железо-связывающие белки трансферрин и лактоферрин,
содержащиеся во внеклеточных жидкостях.

 
КЛЕТОЧНОЕ ЖЕЛЕЗО

 
Гемоглобин, (от др.-греч. αἷμα — кровь и лат. globus — шар) — сложный железосодержащий белок кровосодержащих
животных, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных
животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1].

Нормальным содержанием 
гемоглобина в крови человека
считается: у мужчин 130—170 г/л (нижний
предел — 120, верхний предел — 180 г/л), у женщин
120—150 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен
значительным колебаниям. Так, у детей
через 1—3 дня после рождения нормальный
уровень гемоглобина максимальный и составляет
145—225 г/л, а к 3—6 месяцам снижается до
минимального уровня 95—135 г/л, затем с
1 года до 18 лет отмечается постепенное
увеличение нормального уровня гемоглобина
в крови.[2]

Главная функция гемоглобина 
состоит в переносе кислорода. У 
человека в капиллярах лёгких в условиях избытка кислорода последний
соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со
связанным кислородом, доставляются к
органам и тканям, где кислорода мало;
здесь необходимый для протекания окислительных
процессов кислород освобождается из
связи с гемоглобином. Кроме того, гемоглобин
способен связывать в тканях небольшое
количество диоксида углерода (CO2) и освобождать его в лёгких. Монооксид углерода (CO) связывается с гемоглобином крови
намного сильнее (почти в 500 раз), чем кислород,
образуя карбоксигемоглобин (HbCO).
Некоторые процессы приводят к окислению
иона железа в гемоглобине до степени
окисления +3. В результате образуется
форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от мета… и гемоглобин,
иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы
транспортировки кислорода. Впрочем, монооксид
углерода может быть частично вытеснен
из гема при повышении парциального давления
кислорода в легких.

Метгемоглобин — производное
гемоглобина, в котором железо окислено (трехвалентно).
Метгемоглобин не способен переносить
кислород. Образуется в организме при
некоторых видах отравлений.[3]

Строение

Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической
группы здесь выступает особая пигментная группа,
содержащая химический элемент железо — гем. Гемоглобин человека является тетрамером,
то есть состоит из четырёх субъединиц.
У взрослого человека они представлены
полипептидными цепями α1, α2,
β1 и β2. Субъединицы соединены
друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц
вносят гидрофобные взаимодействия. И α, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных
участков, обозначаемых буквами A-H (От
N-конца к C-концу).

Гем представляет собой комплекс протопорфирина
IX, относящегося к классу порфириновых соединений, с атомом железа(II). Эта простетическая
группа нековалентно связана с гидрофобной
впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической
координацией, то есть связывается 
с шестью лигандами. Четыре из них 
представлены атомами азота порфиринового кольца, лежащими в одной
плоскости. Две других координационных
позиции лежат на оси, перпендикулярной
плоскости порфирина. Одна из них занята
азотом остатка гистидина в 93 положении полипептидной цепи (участок
F). Связываемая гемоглобином молекула
кислорода координируется к железу с обратной
стороны и оказывается заключённой между
атомом железа и азотом ещё одного остатка
гистидина, располагающегося в 64 положении
цепи (участок E).

Всего в гемоглобине человека четыре
участка связывания кислорода (по одному
гему на каждую субъединицу), то есть одновременно
может связываться четыре молекулы. Гемоглобин
в легких при высоком парциальном давлении
кислорода соединяется с ним, образуя
оксигемоглобин. При этом кислород соединяется
с гемом, присоединяясь к железу гема на
6-ю координационную связь. На эту же связь
присоединяется и моноксид углерода, вступая
с кислородом в «конкурентную борьбу»
за связь с гемоглобином, образуя карбоксигемоглобин.

Связь моноксида углерода с гемоглобином
более прочная, чем с кислородом.
Поэтому часть гемоглобина, образующая
комплекс с моноксидом углерода, не участвует
в транспорте кислорода. В норме у человека
образуется 1,2 % карбоксигемоглобина. Повышение
его уровня характерно для гемолитических
процессов, в связи с этим уровень карбоксигемоглобина
является показателем гемолиза.

Для связывания кислорода с гемоглобином
характерна кооперативность: после присоединения первой молекулы
кислорода связывание последующих облегчается.

Гемоглобин является одним из основных
белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного
шара весьма распространены наследственные
аномалии строения гемоглобина, затрудняющие
малярийным плазмодиям питание этим белком
и проникновение в эритроцит. В частности,
к таким имеющим эволюционно-приспособительное
значение мутациям относится аномалия
гемоглобина, приводящая к серповидно-клеточной
анемии. Однако, к несчастью, эти аномалии (как
и аномалии строения гемоглобина, не имеющие
явно приспособительного значения) сопровождаются
нарушением кислород-транспортирующей
функции гемоглобина, снижением устойчивости
эритроцитов к разрушению, анемией и другими негативными последствиями.
Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высоко токсичен при 
попадании значительного его количества
из эритроцитов в плазму крови (что происходит при массивном
внутрисосудистом гемолизе, геморрагическом шоке, гемолитических
анемиях, переливании несовместимой крови и
других патологических состояниях). Токсичность
гемоглобина, находящегося вне эритроцитов,
в свободном состоянии в плазме крови,
проявляется тканевой гипоксией — ухудшением кислородного снабжения
тканей, перегрузкой организма продуктами
разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных
канальцев крупными молекулами гемоглобина
с развитием некроза почечных канальцев
и острой почечной
недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме
существуют специальные системы для его
связывания и обезвреживания. В частности,
одним из компонентов системы обезвреживания
гемоглобина является особый плазменный
белок гаптоглобин, специфически связывающий свободный
глобин и глобин в составе гемоглобина.
Комплекс гаптоглобина и глобина (или
гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной
системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин, специфически связывающий свободный
гем и гем в составе гемоглобина. Комплекс
гема (или гемоглобина) и гемопексина затем
захватывается печенью, гем отщепляется и используется для синтеза билирубина и других желчных пигментов, или выпускается в рециркуляцию в комплексе
с трансферрином для повторного использования костным
мозгом в процессе эритропоэза.

Гемоглобин
при заболеваниях крови

Дефицит гемоглобина 
может быть вызван, во-первых, уменьшением 
количества молекул самого гемоглобина
(см. анемия), во-вторых, из-за уменьшенной способности
каждой молекулы связать кислород при
том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления
кислорода в крови, её следует отличать
от дефицита гемоглобина. Хотя и гипоксемия,
и дефицит гемоглобина являются причинами гипоксии.

Прочие причины низкого 
гемоглобина разнообразны: кровопотеря,
пищевой дефицит, болезни костного
мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание
гемоглобина в крови связано 
с увеличением количества или 
размеров эритроцитов, что наблюдается 
также при поликизэмии (англ.)русск.. Это повышение может быть вызвано: врожденной
болезнью сердца, лёгочным фиброзом, слишком
большим количеством эритропоэтина.

 
Миоглобин – дыхательный белок сердечной и скелетной
мускулатуры. Он состоит из единственной
полипептидной цепочки, содержащей 153
аминокислоты и соединенный с гемпростетической
группой. Основной функцией миоглобина
является транспортировка кислорода через
клетку и регуляция его содержания в мышце
для осуществления сложных биохимических
процессов, лежащих в основе клеточного
дыхания. Он содержит0,34% железа. Миоглобин
депонирует кислород во время сокращения
мышц, а при их поражении он может попадать
в кровь и выделяться с мочой.

Железосодержащие ферменты
и негеминовое железо клетки находится главным образом
в митохондриях.

Наиболее изученными
и важными для организма ферментами являются цитохромы, каталаза и пероксидаза.

Цитохромы делятся на 4 группы в зависимости отстроения
геминовой группы:

 
n А – цитохромы с гем – группой, 
соединяющей формилпорфин

 
n В – цитохромы с протогем – группой

 
n С – цигохромы с замещенной 
мезогем – группой

 
n Д – цитохромы с гем – группой, соединяющей дегидропорфин.

 
В организме человека содержатся следующие 
цитохромы

 
а1, аз, в, в5, с, с1, Р450. Они представляют собой липидные комплексы гемопротеинов
и прочно связаны с мембраной митохондрии.
Однако, цитохромы в5 и Р450 находятся в
эндоплазматическом ретикулюме, а микросомы
содержат НАДН- цитохром С – редуктазу.
Существует мнение, что митохондриальное
дыхание необходимо для процессов дифференцировки
тканей, а внемитохондриальное играет
важную роль в процессах роста и дыхания
клетки. Основной биологической ролью
большинства цитохромов является участие
в перенос еэлектронов, лежащих в основе
процессов терминального окисления в
тканях.

 
Цитохромоксидаза является конечным ферментоммитохондриального
транспорта электронов – электронотранспортнойцепочки,
ответственным за образование АТФ при
окислительном фосфолировании в митохондриях.
Показана тесная зависимостьмежду содержанием
этого фермента в тканях и утилизацией
имикислорода.

 
Каталаза, как и цитохромоксидаза, состоит из
единственной полипептидной цепочки,
соединенной с гем – группой.Она является
одним из важнейших ферментов, предохраняющих
эритроциты от окислительного гемолиза.
Каталаза выполняет двойную функцию в
зависимости от концентрации перекиси
водорода в клетке. При высокой концентрации
перекиси водорода фермент катализирует
реакцию ее разложения, а при низкой – и
в присутствии донора водорода (метанол,
этанол и др.) становится преобладающей
пероксидазная активность каталазы.

 
Пероксидаза содержится преимущественно в лейкоцитах
и слизистой тонкого кишечника у человека.
Она также обладает защитной ролью, предохраняя
клетки от их разрушения перекисными соединениями.
Миелопероксидаза – железосодержащий 
геминовый фермент, находящийся в азурофильных
гранулах нейтрофильных лейкоцитов и
освобождается в фагоцитирующие вакуол
в течение лизиса гранул.

 
Активированное этим ферментом разрушение
белка клеточной стенки бактерий
является смертельным для микроорганизма,
аактивированное им йодинирование 
частиц относится к бактерицидной функции лейкоцитов.

.  
К железосодержащим относятся и флавопротеиновые ферменты, в которых железо не включено в геминовую
группу и необходимо только для реакций
переноса.Наиболее изученной является сукцинатдегидрогеназа,
которая наиболее активна в цикле трикарбоновых
кислот. Митохондриальные мембраны свободно
проницаемы для субстрата фермента.  
Негеминовое железо, локализующееся главнымобразом
в митохондриях клетки, играет существенную
роль в дыхании клетки, участвуя в окислительном
фосфолировании и транспорте  
электронов при терминальном окислении,
в цикле трикарбоновых  
кислот. 
Ферритин и гемосидерин
– запасные соединения железа в клетке,
находящиеся главным образом вретикулоэндотелиальной
системе печени, селезенки и костногомозга.
Приблизительно одна треть резервного
железа организмачеловека, преимущественно
в виде ферритина, падает на долюпечени.
Запасы железа могут быть при необходимости
мобилизованы для нужд организма и предохраняют
его от токсичного действия свободно циркулирующего
железа.

 
Известно, что гепатоциты и купферовские клетки печени участвуют
в создании резервного железа, причем
в нормальной печени большая часть пегом
и нового железа обнаружена в гепатоцитах
в виде ферритина. При парентеральном
введении железа как гепатоциты, так и
кунферовские клетки печениаккумулируют
большое количество дополнительного ферритина,
хотя последние имеют тенденцию запасать
относительно больше излишнего негеминового
железа в виде гемосидерина.

Источник