Миоглобин и гемоглобин это олигомерные белки

Миоглобин и гемоглобин это олигомерные белки thumbnail

Гемоглобин и миоглобин являются двумя типами глобиновых белков, которые служат в качестве связывающих кислород белков. Оба белка способны увеличивать количество растворенного кислорода в биологически

Основное отличие – гемоглобин против миоглобина

Гемоглобин и миоглобин являются двумя типами глобиновых белков, которые служат в качестве связывающих кислород белков. Оба белка способны увеличивать количество растворенного кислорода в биологических жидкостях позвоночных, а также у некоторых беспозвоночных. Органические простетические группы со сходными характеристиками участвуют в связывании кислорода в обоих белках. Но трехмерная ориентация в пространстве или стереоизомерия гемоглобина и миоглобина различны. Из-за этой разницы количество кислорода, которое может связываться с каждой из молекул белка, также различно. Гемоглобин способен плотно связываться с кислородом в то время как миоглобин неспособен к прочному связыванию с кислородом. Это различие между гемоглобином и миоглобином приводит к их различным функциям; гемоглобин находится в кровотоке, транспортируя кислород от легких к остальной части тела в то время как миоглобин находится в мышцах, выделяя необходимый кислород.

Ключевые области покрыты

1. Что такое гемоглобин
      – определение, структура и состав, функция
2. Что такое миоглобин
      – определение, структура и состав, функция
3. Сходство между гемоглобином и миоглобином
      – очертить сходство
4. В чем разница между гемоглобином и миоглобином
– Сравнение основных различий

Ключевые термины: гемоглобин, миоглобин, кислород, гем, белки, глобиновый белок, кровь

Что такое гемоглобин

Гемоглобин – это многочастичный глобулярный белок с четвертичной структурой. Он состоит из двух α и двух β субъединиц, расположенных в тетраэдрической структуре. Гемоглобин является железосодержащим металлопротеином. Каждая из четырех глобулярных белковых субъединиц связана с небелковой протезной гемовой группой, которая связывается с одной молекулой кислорода. Производство гемоглобина происходит в костном мозге. Глобиновые белки синтезируются рибозомами в цитозоле. Гемовая часть синтезируется в митохондриях. Заряженный атом железа удерживается в порфириновом кольце путем ковалентного связывания железа с четырьмя атомами азота в одной плоскости. Эти атомы N принадлежат имидазольному кольцу остатка гистидина F8 каждой из четырех субъединиц глобина. В гемоглобине железо существует как Fe2+, придавая красный цвет эритроцитам.

У людей есть три типа гемоглобина: гемоглобин А, гемоглобин А2 и гемоглобин Ф. Гемоглобин А это распространенный тип гемоглобина, который кодируется HBA1, HBA2, а также ГБД Гены. Четыре субъединицы гемоглобина А состоят из двух α и двух субъединиц β (α2β2). Гемоглобин А2 и гемоглобин F редки и состоят из двух α и двух субъединиц δ и двух α и двух субъединиц γ соответственно. У младенцев тип гемоглобина Hb F (α2γ2).

Поскольку молекула гемоглобина состоит из четырех субъединиц, она может связываться с четырьмя молекулами кислорода. Таким образом, гемоглобин обнаружен в эритроцитах, как переносчик кислорода в крови. Из-за присутствия в структуре четырех субъединиц связывание кислорода увеличивается, когда первая молекула кислорода связывается с первой гем-группой. Этот процесс определяется как кооперативное связывание кислорода. Гемоглобин составляет 96% сухого веса эритроцитов. Некоторая часть углекислого газа также связана с гемоглобином для транспортировки из тканей в легкие. 80% углекислого газа транспортируется через плазму. Структура гемоглобина показана на Рисунок 1.

Рисунок 1: Структура гемоглобина

Функция гемоглобина

Что такое миоглобин

Миоглобин является кислородсвязывающим белком в мышечных клетках позвоночных, придающим мышцам отчетливый красный или темно-серый цвет. Это исключительно выражено в скелетных мышцах и сердечных мышцах. Миоглобин составляет 5-10% цитоплазматических белков в мышечных клетках. Поскольку аминокислотные изменения в полинуклеотидных цепях гемоглобина и миоглобина являются консервативными, как гемоглобин, так и миоглобин имеют сходную структуру. Кроме того, миоглобин представляет собой мономер, состоящий из одной полинуклеотидной цепи, состоящей из одной гем-группы. Следовательно, он способен связываться с одной молекулой кислорода. Таким образом, в миоглобине не происходит кооперативного связывания кислорода. Но аффинность связывания миоглобина является высокой по сравнению с таковой гемоглобина. В результате миоглобин служит белком, запасающим кислород в мышцах. Миоглобин выделяет кислород, когда мышцы функционируют. 3-D структура гемоглобина показана на фигура 2.

Рисунок 2: Миоглобин

Сходства между гемоглобином и миоглобином

  • И гемоглобин, и миоглобин являются связывающими кислород глобулярными белками.
  • Оба они содержат кислородсвязывающий гем в качестве протезной группы.
  • И гемоглобин, и миоглобин дают красный цвет крови и мышцам соответственно.

Разница между гемоглобином и миоглобином

Определение

Гемоглобин: Гемоглобин – это красный белок, который отвечает за транспортировку кислорода в крови позвоночных.

Миоглобин: Миоглобин – это красный белок с гемом, который переносит и запасает кислород в мышечных клетках.

Молекулярный вес

Гемоглобин: Молекулярная масса гемоглобина составляет 64 кДа.

Миоглобин: Молекулярная масса гемоглобина составляет 16,7 кДа.

Состав

Гемоглобин: Гемоглобин состоит из четырех полипептидных цепей.

Миоглобин: Миоглобин состоит из одной полипептидной цепи.

Четвертичная структура

Гемоглобин: Гемоглобин представляет собой тетрамер, состоящий из двух α и двух β субъединиц.

Миоглобин: Миоглобин является мономером. Следовательно, ему не хватает четвертичной структуры.

Количество молекул кислорода

Гемоглобин: Гемоглобин связывается с четырьмя молекулами кислорода.

Миоглобин: Миоглобин связывается только с одной молекулой кислорода.

Кооперативное связывание

Гемоглобин: Поскольку гемоглобин является тетрамером, он проявляет кооперативное связывание с кислородом.

Миоглобин: Поскольку миоглобин является мономером, он не проявляет кооперативного связывания.

Сродство к кислороду

Гемоглобин: Гемоглобин обладает низким сродством к связыванию с кислородом.

Миоглобин: Миоглобин обладает высоким сродством связываться с кислородом, что не зависит от концентрации кислорода.

Связь с кислородом

Гемоглобин: Гемоглобин способен плотно связываться с кислородом.

Миоглобин: Миоглобин не способен тесно связываться с кислородом.

Вхождение

Гемоглобин: Гемоглобин находится в кровотоке.

Миоглобин: Миоглобин находится внутри мышц.

Типы

Гемоглобин: Гемоглобин А, гемоглобин А2 и гемоглобин F являются типами гемоглобина у людей.

Миоглобин: Единственный тип миоглобина обнаружен во всех клетках.

функция

Гемоглобин: Гемоглобин берет кислород из легких и транспортирует к остальной части тела.

Миоглобин: Миоглобин накапливает кислород в мышечных клетках и выделяет при необходимости.

Заключение

Гемоглобин и миоглобин являются двумя связывающими кислород глобулярными белками у позвоночных. Гемоглобин представляет собой тетрамер, который совместно связывается с четырьмя молекулами кислорода. Миоглобин – это мономер, состоящий из одной группы гемов. Поскольку связывающая способность гемоглобина выше, чем у миоглобина, гемоглобин используется в качестве транспортирующего кислород белка в крови. Миоглобин используется в качестве запасающего кислород белка в мышечных клетках. Сродство связывания кислорода с миоглобином выше, чем у гемоглобина. Основное различие гемоглобина и миоглобина заключается в их функции. Функциональное различие гемоглобина и миоглобина возникает из-за разницы их трехмерной структуры.

Ссылка:

1. «Миоглобин». Гемоглобин и миоглобин. Н.п., н.д. Web.

Источник

1. Многие белки имеют в своем составе несколь­ко полипептидных цепей. Такие белки называют олигомерными, а отдельные цепи — протомерами.
Протомеры в олигомерном белке соединены мно­жеством слабых, нековалентных связей (гидрофоб­ных, ионных, водородных).

Взаимодействие протомеров осуществляется благодаря комплементарности их контактирующих поверхностей.

Количество протомеров в белках может сильно варьировать: гемоглобин содержит 4 протомера, фер­мент аспартаттранскарбамоилаза — 12 протомеров, в белок вируса табачной мозаики входит 2120 протоме­ров, соединенных нековалентными связями. Следо­вательно, белки с четвертичной структурой могут иметь очень большую молекулярную массу.

2.     Взаимодействие одного протомера с другими можно рассматривать как частный случай взаимо­действия белка с лигандом. Каждый протомер слу­жит лигандом для других протомеров.

3.     Количество и порядок соединения протомеров в белке называется четвертичной структурой.

ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ ОЛИГОМЕРНЫХ БЕЛКОВ

1.Олигомерные белки могут содержать разное количество протомеров (например, димеры, тетра-меры, гексамеры и т. д.).

2.     В состав олигомерных белков могут входить одинаковые или разные протомеры, например го-модимеры – белки содержащие 2 одинаковых про­томера, гетеродимеры – белки, содержащие 2 раз­ных протомера.

3.     Различные по структуре протомеры могут свя­зывать разные лиганды.

4.     Взаимодействие одного протомера со специ­фическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других протомеров к лигандам. Это явле­ние носит название кооперативных изменений конформации протомеров.

5. У олигомерных белков появляется новое по сравнению с одноцепочечными белками свойст­во — способность к аллостерической регуляции их функций.

Гемоглобин — олигомерный белок, функция которо­го регулируется различными лигандами.

1.Гемоглобин (НЬ) — сложный олигомерный белок, содержащийся в эритроцитах. Он состоит из 4 протомеров, соединенных нековалентными связями.

2.      НЬ — белок, родственный миоглобину. Вто­ричная и третичная структуры миоглобина и про­томеров НЬ очень сходны, несмотря на то что в первичной структуре полипептидных цепей иден­тичны только 24 аминокислотных остатка (каж­дый протомер содержит 8 ос-спиралей, обозначае­мых буквами от А до Н).

Следовательно, белки, значительно различаю­щиеся по аминокислотной последовательности, могут приобретать сходные пространственные структуры.

3.      Каждый протомер НЬ в белке связан с небел­ковой частью — гемом и 3 другими протомерами.

4.      Соединение белковой части НЬ с гемом ана­логично таковому у миоглобина: гидрофобные части гема окружены гидрофобными радикалами аминокислот, за исключением Гис F8 и Гис Е7, которые расположены по обе стороны от плоско­сти гема и играют важную роль в связывании ге­моглобина с 02.

Гемоглобины человека

Гемоглобин А — тетрамер: (2а2р). Составляет около 98% гемоглобина эритроцитов взрослого человека.

Гемоглобин А2 — тетрамер (2а28). Его содержа­ние в эритроцитах взрослого человека равно 2%.

Гемоглобин эмбриональный — тетрамер (2а2е). Обнаруживается на ранних этапах развития плода.

Гемоглобин F— тетрамер (2ос2у). Приходит на смену раннему гемоглобину плода на 6-м месяце развития.

Таким образом, все типы гемоглобина содержат одинаковую ос-цепь и различаются по второй цепи. Основная функция гемоглобина – транспорт 02 из легких в ткани. Структура гемоглобина обеспечивает:

1) быстрое насыщение гемоглобина кислородом в легких;

Рис. 1.16. Изменение конформации протомера

гемоглобина при соединении с 02.

Миоглобин и гемоглобин это олигомерные белки

2) способность НЬ отдавать 02 в капиллярах тка­ней при относительно высоком парциальном давлении 02 (20—40 мм рт. ст.);

3) возможность регуляции сродства НЬ к 02, что отличает его от близкого по структуре, но мо­номерного белка — миоглобина.

Кооперативные изменения конформации протоме-ров НЬ ускоряют нагрузку белка 02 в легких и раз­грузку в тканях.

Рис. 1.17. Связывание 02 и СО с гемом НЬ

Миоглобин и гемоглобин это олигомерные белки

1.02 связывается с протомерами НЬ через Fe2+, который соединен с 4 атомами азота пиррольных колец гема и образует одну координационную связь с Гис F8 белковой части протомера (рис. 1.16).

2.    В дезоксигемоглобине благодаря этой связи атом Fe2+ выступает из плоскости гема в направле­нии Гис F8. Связывание 02 с оставшейся свобод­ной координационной связью Fe2+ происходит по другую сторону плоскости гема в области Гис Е7.

3.    Гис Е7 не взаимодействует с 02, но обеспечивает оптимальные условия для его связывания (рис. 1.17).

Рис. 1.18. Взаимодействие гемоглобина с 02.

Миоглобин и гемоглобин это олигомерные белки

4.    Присоединение 02 к атому Fe2+ одного прото­мера вызывает его перемещение в плоскость гема, перемещение остатка Гис F8, связанного с ним, и изменение конформации этой и связанных с ней других полипептидных цепей.

5.    Изменение конформации облегчает взаимодейст­вие следующего протомера с 02, что вновь вызывает кооперативные изменения конформации протомеров и ускорение связывания с очередной молекулой 02.

Четвертая молекула 02 присоединяется к гемогло­бину в 300 раз легче, чем первая молекула (рис. 1.18).

В тканях каждая последующая молекула 02 от­щепляется легче, чем предыдущая, также за счет ко­оперативных изменений конформации протомеров.

Роль Гис Ё7 в функционировании гемоглобина

Гему свойственно высокое сродство к СО, его связывание со свободным гемом происходит при­мерно в 25 000 раз сильнее, чем связывание 02.

В составе гемоглобина сродство СО к гему пре­вышает сродство к 02 всего в 200 раз.

Гис Е7 создает оптимальные условия для связы­вания 02 с гемом и ослабляет взаимодействие ге­ма с СО (см. рис. 1.17).

Бисфосфоглицерат в капиллярах тканей, связыва­ясь с дезоксигемоглобином, облегчает диссоциацию 02 из оксигенированного НЬ.

1.В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех 4 протомеров (рис. 1.19).

2.     В молекуле дезоксигемоглобина по сравнению с оксигемоглобином имеются дополнительные ионные связи, соединяющие протомеры. Вследст­вие этого размеры центральной полости меняются: увеличиваются в дезоксигемоглобине и уменьша­ются в оксигемоглобине.

3.     Центральная полость является местом присое­динения 2,3-бисфосфоглицерата (2,3-БФГ) к гемо­глобину. Из-за различия в размерах центральной полости 2,3-БФГ может присоединяться только к дезоксигемоглобину.

Рис. 1.19. Центральная полость в гемоглобине.

Миоглобин и гемоглобин это олигомерные белки

4. 2,3-БФГ присоединяется к гемоглобину в ином по сравнению с 02 участке. Такой лиганд называется аллостерическим. Центр, где связы­вается аллостерический лиганд, называется ал­лостерическим центром.

2,3-Бисфосфоглицерат — вещество, синтезируе­мое в эритроцитах из промежуточного продукта окисления глюкозы – 1,3-бисфосфоглицерата.

Миоглобин и гемоглобин это олигомерные белки

В нормальных условиях БФГ присутствует в до­вольно высоких концентрациях в эритроцитах и его суммарная концентрация (БФГ+НЬБФГ) при циркуляции крови из легких в ткани и обратно не меняется. Количество БФГ в эритроцитах может увеличиваться при недостатке 02 в тканях.

5. 2,3-БФГ имеет сильный отрицательный заряд и взаимодействует с 5 положительно заряженными группами 2(3-цепей: а-аминогруппой валина на N-конце (3-цепей, Лиз82 и Гис14з (рис. 1.20).

В результате взаимодействия 2,3-БФГ с дезок-сигемоглобином образуется 5 дополнительных ионных связей, что снижает сродство гемогло­бина к 02.

Рис. 1.20. БФГ в центральной полости дезоксигемоглобина. БФГ

связывается с 3 положительно зараженными группами в каждой b-цепи.

Миоглобин и гемоглобин это олигомерные белки

6. В легких при высоком парциальном давлении кислород взаимодействует с НЬ, изменяется конформация белка, уменьшается центральная по­лость и происходит вытеснение 2,3-БФГ.

легкие НЬ02+2,ЗБФГ <      > НЬ 2,3-БФГ+02

ткани

С02 и Н+, образующиеся при катаболизме органи­ческих веществ, уменьшают сродство гемоглобина к 02 пропорционально их концентрации.

Образование в тканях продуктов катаболизма орга­нических веществ

Окисление органических веществ происходит в митохондриях клеток с использованием 02, до­ставляемого гемоглобином из легких.

В результате окисления веществ образуются ос­новные конечные продукты распада: С02 и Н20, количество которых пропорционально интенсив­ности процессов окисления.

1. С02 в эритроцитах под действием фермента карбангидразы превращается в угольную кислоту, которая диссоциирует на протон и ион бикарбоната:

С02 + Н20 -> Н2С03->Н+ + НСО’з

2. Н+ способны присоединяться к радикалам Гис14б в а- и (3-цепях гемоглобина, т.е. в участках, удаленных от гема. Протонирование гемоглобина снижает его сродство к 02 и увеличивает поступление 02 в ткани.

3. Увеличение освобождения 02 гемоглобином в зависимости от концентрации Н+ называется эффектом Бора (по имени датского физиолога Хрис­тиана Бора, впервые открывшего этот эффект). 4. В легких связывание 02 с дезоксигемоглобином приводит к уменьшению сродства гемоглобина к Н+. Под действием карбангидразы в эритроцитах освободившиеся протоны взаимодействуют с би­карбонатами с образованием С02:

Н+ + НС05 -> Н2С03-> С02 + Н20

Образовавшийся С02 поступает в альвеолярное пространство и удаляется с выдыхаемым воздухом. Таким образом, количество освобождаемого гемо­глобином 02 в тканях регулируется продуктами катаболизма органических веществ: чем интен­сивнее распад веществ и выше концентрация С02 и Н+, тем больше 02 получают ткани за счет воз­действия этих лигандов на гемоглобин и сниже­ния его сродства к 02.

Резюме. Олигомерные белки обладают новыми по сравнению с мономерными белками свойства­ми. Присоединение лигандов в участках, прост­ранственно удаленных друг от друга (аллостериче-ских), способно вызывать конформационные изменения во всем белке. Благодаря этому воздей­ствие регуляторных лигандов может приспосабли­вать конформацию и функцию белка к изменени­ям, происходящим в среде.

Источник

Âëèÿíèå ÷åòâåðòè÷íîé ñòðóêòóðû íà ôóíêöèîíàëüíûå ñâîéñòâà áåëêà. Ñðàâíèòåëüíàÿ õàðàêòåðèñòèêà ìèîãëîáèíà è ãåìîãëîáèíà, èõ ñòðóêòóðà è çíà÷åíèå. Êîîïåðàòèâíûå èçìåíåíèÿ êîíôîðìàöèè ïðîòîìåðîâ. Ðåãóëÿòîðíûå ñâîéñòâà îëèãîìåðíîãî áåëêà ãåìîãëîáèíà.

Ñòóäåíòû, àñïèðàíòû, ìîëîäûå ó÷åíûå, èñïîëüçóþùèå áàçó çíàíèé â ñâîåé ó÷åáå è ðàáîòå, áóäóò âàì î÷åíü áëàãîäàðíû.

Ðàçìåùåíî íà https://www.allbest.ru/

Ðàçìåùåíî íà https://www.allbest.ru/

Ðåôåðàò

Îñîáåííîñòè ôóíêöèîíèðîâàíèÿ îëèãîìåðíûõ áåëêîâ íà ïðèìåðå ãåìîãëîáèíà

Îëèãîìåðíûå áåëêè ïðîÿâëÿþò ñâîéñòâà, îòñóòñòâóþùèå ó ìîíîìåðíûõ áåëêîâ. Âëèÿíèå ÷åòâåðòè÷íîé ñòðóêòóðû íà ôóíêöèîíàëüíûå ñâîéñòâà áåëêà ìîæíî ðàññìîòðåòü, ñðàâíèâàÿ ñòðîåíèå è ôóíêöèè äâóõ ðîäñòâåííûõ ãåìñîäåðæàùèõ áåëêîâ: ìèîãëîáèíà è ãåìîãëîáèíà. Îáà áåëêà èìåþò îáùåå ýâîëþöèîííîå ïðîèñõîæäåíèå, ñõîäíóþ êîíôîðìàöèþ îòäåëüíûõ ïîëèïåïòèäíûõ öåïåé è ñõîäíóþ ôóíêöèþ (ó÷àñòâóþò â òðàíñïîðòå êèñëîðîäà), íî ìèîãëîáèí – ìîíîìåðíûé áåëîê, à ãåìîãëîáèí – òåòðàìåð. Íàëè÷èå ÷åòâåðòè÷íîé ñòðóêòóðû ó ãåìîãëîáèíà ïðèäà¸ò ýòîìó áåëêó ñâîéñòâà, îòñóòñòâóþùèå ó ìèîãëîáèíà.

Ìèîãëîáèí ñîäåðæèò íåáåëêîâóþ ÷àñòü (ãåì) è áåëêîâóþ ÷àñòü (àïîìèîãëîáèí).

Ãåì – ìîëåêóëà, èìåþùàÿ ñòðóêòóðó öèêëè÷åñêîãî òåòðàïèððîëà, ãäå 4 ïèððîëüíûõ êîëüöà ñîåäèíåíû ìåòèëåíîâûìè ìîñòèêàìè è ñîäåðæàò 4 ìåòèëüíûå, 2 âèíèëüíûå è 2 ïðîïèîíàòíûå áîêîâûå öåïè. Ýòà îðãàíè÷åñêàÿ ÷àñòü ãåìà íàçûâàåòñÿ ïðîòîïîðôèðèíîì. Âîçìîæíû 15 âàðèàíòîâ ðàñïîëîæåíèÿ áîêîâûõ öåïåé, íî â ñîñòàâå ãåìîïðîòåèíîâ ïðèñóòñòâóåò òîëüêî îäèí èçîìåð, íàçûâàåìûé ïðîòîïîðôèðèí IX.  ãåìå 4 àòîìà àçîòà ïèððîëüíûõ êîëåö ïðîòîïîðôèðèíà IX ñâÿçàíû ÷åòûðüìÿ êîîðäèíàöèîííûìè ñâÿçÿìè ñ Fe2+, íàõîäÿùèìñÿ â öåíòðå ìîëåêóëû.

Àïîìèîãëîáèí – áåëêîâàÿ ÷àñòü ìèîãëîáèíà; ïåðâè÷íàÿ ñòðóêòóðà ïðåäñòàâëåíà ïîñëåäîâàòåëüíîñòüþ èç 153 àìèíîêèñëîò, êîòîðûå âî âòîðè÷íîé ñòðóêòóðå óëîæåíû â 8 à-ñïèðàëåé. à-Ñïèðàëè îáîçíà÷àþò ëàòèíñêèìè áóêâàìè îò À äî Í, íà÷èíàÿ ñ N-êîíöà ïîëèïåïòèäíîé öåïè, è ñîäåðæàò îò 7 äî 23 àìèíîêèñëîò. Òðåòè÷íàÿ ñòðóêòóðà èìååò âèä êîìïàêòíîé ãëîáóëû, îáðàçîâàííîé çà ñ÷¸ò ïåòåëü è ïîâîðîòîâ â îáëàñòè íåñïèðàëèçîâàííûõ ó÷àñòêîâ áåëêà. Âíóòðåííÿÿ ÷àñòü ìîëåêóëû ïî÷òè öåëèêîì ñîñòîèò èç ãèäðîôîáíûõ ðàäèêàëîâ, çà èñêëþ÷åíèåì äâóõ îñòàòêîâ Ãèñ, ðàñïîëàãàþùèõñÿ â àêòèâíîì öåíòðå.

Ñâÿçûâàíèå ãåìà ñ àïîìèîãëîáèíîì.

Ãåì – ñïåöèôè÷åñêèé ëèãàíä àïîìèîãëîáèíà, ïðèñîåäèíÿþùèéñÿ ê áåëêîâîé ÷àñòè â óãëóáëåíèè ìåæäó äâóìÿ à-ñïèðàëÿìè F è Å. Öåíòð ñâÿçûâàíèÿ ñ ãåìîì îáðàçîâàí ïðåèìóùåñòâåííî ãèäðîôîáíûìè îñòàòêàìè àìèíîêèñëîò, îêðóæàþùèìè ãèäðîôîáíûå ïèððîëüíûå êîëüöà ãåìà. Äâå áîêîâûå ãðóïïû ïðîïèîíîâûõ êèñëîò, èîíèçèðîâàííûå ïðè ôèçèîëîãè÷åñêèõ çíà÷åíèÿõ ðÍ, âûñòóïàþò íà ïîâåðõíîñòè ìîëåêóëû.

 àêòèâíûé öåíòð àïîìèîãëîáèíà êðîìå ãèäðîôîáíûõ àìèíîêèñëîò âõîäÿò òàêæå 2 îñòàòêà Ãèñ (Ãèñ64 è Ãèñ93 èëè Ãèñ Å7 è Ãèñ F8), èãðàþùèå âàæíóþ ðîëü â ôóíêöèîíèðîâàíèè áåëêà. Îíè ðàñïîëîæåíû ïî ðàçíûå ñòîðîíû îò ïëîñêîñòè ãåìà è âõîäÿò â ñîñòàâ ñïèðàëåé F è Å, ìåæäó êîòîðûìè ðàñïîëàãàåòñÿ ãåì. Àòîì æåëåçà â ãåìå ìîæåò îáðàçîâûâàòü 6 êîîðäèíàöèîííûõ ñâÿçåé, 4 èç êîòîðûõ óäåðæèâàþò Fe2+ â öåíòðå ïðîòîïîðôèðèíà IX (ñîåäèíÿÿ åãî ñ àòîìàìè àçîòà ïèððîëüíûõ êîëåö), à 5-ÿ ñâÿçü âîçíèêàåò ìåæäó Fe2+ è àòîìîì àçîòà èìèäàçîëüíîãî êîëüöà Ãèñ F8 (ðèñ. 2).

Ãèñ Å7 õîòÿ è íå ñâÿçàí ñ ãåìîì, íî íåîáõîäèì äëÿ ïðàâèëüíîé îðèåíòàöèè è ïðèñîåäèíåíèÿ äðóãîãî ëèãàíäà – Î2 ê ìèîãëîáèíó.

Àìèíîêèñëîòíîå îêðóæåíèå ãåìà ñîçäà¸ò óñëîâèÿ äëÿ äîâîëüíî ïðî÷íîãî, íî îáðàòèìîãî ñâÿçûâàíèÿ Î2 ñ Fe2+ ìèîãëîáèíà. Ãèäðîôîáíûå îñòàòêè àìèíîêèñëîò, îêðóæàþùèå ãåì, ïðåïÿòñòâóþò ïðîíèêíîâåíèþ â öåíòð ñâÿçûâàíèÿ ìèîãëîáèíà âîäû è îêèñëåíèþ Fe2+ â Fe3+. Òð¸õâàëåíòíîå æåëåçî â ñîñòàâå ãåìà íå ñïîñîáíî ïðèñîåäèíÿòü Î2.

Ñòðóêòóðà è ôóíêöèè ãåìîãëîáèíà.

Ãåìîãëîáèíû – áåëêè, íàõîäÿùèåñÿ â ýðèòðîöèòàõ ÷åëîâåêà è ïîçâîíî÷íûõ æèâîòíûõ. Ýòè áåëêè âûïîëíÿþò 2 âàæíûå ôóíêöèè:

– ïåðåíîñ Î2 èç ë¸ãêèõ ê ïåðèôåðè÷åñêèì òêàíÿì;

– ó÷àñòèå â ïåðåíîñå ÑÎ2 è ïðîòîíîâ èç ïåðèôåðè÷åñêèõ òêàíåé â ë¸ãêèå äëÿ ïîñëåäóþùåãî âûâåäåíèÿ èç îðãàíèçìà.

Êðîâü åæåäíåâíî äîëæíà ïåðåíîñèòü èç ë¸ãêèõ â òêàíè îêîëî 600 ë Î2. Òàê êàê Î2 ïëîõî ðàñòâîðèì â âîäå, òî ïðàêòè÷åñêè âåñü êèñëîðîä â êðîâè ñâÿçàí ñ ãåìîãëîáèíîì ýðèòðîöèòîâ. Îò ñïîñîáíîñòè ãåìîãëîáèíà íàñûùàòüñÿ Î2 â ë¸ãêèõ è îòíîñèòåëüíî ëåãêî îòäàâàòü åãî â êàïèëëÿðàõ òêàíåé çàâèñÿò êîëè÷åñòâî ïîëó÷àåìîãî òêàíÿìè Î2 è èíòåíñèâíîñòü ìåòàáîëèçìà. Ñ äðóãîé ñòîðîíû, Î2 – ñèëüíûé îêèñëèòåëü, èçáûòîê ïîñòóïëåíèÿ Î2 â òêàíè ìîæåò ïðèâåñòè ê ïîâðåæäåíèþ ìîëåêóë è íàðóøåíèþ ñòðóêòóðû è ôóíêöèé êëåòîê. Ïîýòîìó âàæíåéøàÿ õàðàêòåðèñòèêà ãåìîãëîáèíà – åãî ñïîñîáíîñòü ðåãóëèðîâàòü ñðîäñòâî ê Î2 â çàâèñèìîñòè îò òêàíåâûõ óñëîâèé.

Ãåìîãëîáèíû îòíîñÿò ê ãåìîïðîòåèíàì, íî îíè èìåþò ÷åòâåðòè÷íóþ ñòðóêòóðó (ñîñòîÿò èç 4 ïîëèïåïòèäíûõ öåïåé), áëàãîäàðÿ êîòîðîé âîçíèêàåò âîçìîæíîñòü ðåãóëÿöèè èõ ôóíêöèé.

Ãåìîãëîáèíû ÷åëîâåêà.

Ðàçëè÷àþò íåñêîëüêî âèäîâ ãåìîãëîáèíà ÷åëîâåêà. Ðàññìîòðèì ñòðîåíèå ãåìîãëîáèíà À.

Êîíôîðìàöèÿ îòäåëüíûõ ïðîòîìåðîâ ãåìîãëîáèíà óäèâèòåëüíî íàïîìèíàåò êîíôîðìàöèþ ìèîãëîáèíà, íåñìîòðÿ íà òî, ÷òî â ïåðâè÷íîé ñòðóêòóðå èõ ïîëèïåïòèäíûõ öåïåé èäåíòè÷íû òîëüêî 24 àìèíîêèñëîòíûõ îñòàòêà. Ïðîòîìåðû ãåìîãëîáèíà, òàê æå êàê è àïîìèîãëîáèí, ñîñòîÿò èç 8 ñïèðàëåé, ñâ¸ðíóòûõ â ïëîòíóþ ãëîáóëÿðíóþ ñòðóêòóðó, ñîäåðæàùóþ âíóòðåííåå ãèäðîôîáíîå ÿäðî è «êàðìàí» äëÿ ñâÿçûâàíèÿ ãåìà. Ñîåäèíåíèå ãåìà ñ ãëîáèíîì (áåëêîâîé ÷àñòüþ) àíàëîãè÷íî òàêîâîìó ó ìèîãëîáèíà – ãèäðîôîáíîå îêðóæåíèå ãåìà, çà èñêëþ÷åíèåì 2 îñòàòêîâ Ãèñ Å7 è Ãèñ F8 (ðèñ. 3). Îäíàêî òåòðàìåðíàÿ ñòðóêòóðà ãåìîãëîáèíà ïðåäñòàâëÿåò ñîáîé áîëåå ñëîæíûé ñòðóêòóðíî-ôóíêöèîíàëüíûé êîìïëåêñ, ÷åì ìèîãëîáèí.

Ðîëü ãèñòèäèíà E7 â ôóíêöèîíèðîâàíèè ìèîãëîáèíà è ãåìîãëîáèíà.

Ãåì èìååò âûñîêîå ñðîäñòâî ê îêñèäó óãëåðîäà (ÑÎ).  âîäíîé ñðåäå ñâîáîäíûé îò áåëêîâîé ÷àñòè ãåì ñâÿçûâàåòñÿ ñ ÑÎ â 25 000 ðàç ñèëüíåå, ÷åì Î2. Âûñîêàÿ ñòåïåíü ñðîäñòâà ãåìà ê ÑÎ ïî ñðàâíåíèþ ñ Î2 îáúÿñíÿåòñÿ ðàçíûì ïðîñòðàíñòâåííûì ðàñïîëîæåíèåì êîìïëåêñîâ Fe2+ ãåìà ñ ÑÎ è Î2 (ðèñ. 3, À).

 êîìïëåêñå Fe2+ ãåìà ñ ÑÎ àòîìû Fe2+, óãëåðîäà è êèñëîðîäà ðàñïîëîæåíû íà îäíîé ïðÿìîé, à â êîìïëåêñå Fe2+ ãåìà ñ Î2 àòîìû æåëåçà è êèñëîðîäà ðàñïîëîæåíû ïîä óãëîì, ÷òî îòðàæàåò èõ îïòèìàëüíîå ïðîñòðàíñòâåííîå ðàñïîëîæåíèå.

 ìèîãëîáèíå è ãåìîãëîáèíå íàä Fe2+ â îáëàñòè ïðèñîåäèíåíèÿ Î2 ðàñïîëîæåí Ãèñ Å7, íàðóøàþùèé îïòèìàëüíîå ðàñïîëîæåíèå ÑÎ â öåíòðå ñâÿçûâàíèÿ áåëêîâ è îñëàáëÿþùèé åãî âçàèìîäåéñòâèå ñ ãåìîì. Íàïðîòèâ, òîò æå Ãèñ Å7 ñîçäà¸ò îïòèìàëüíûå óñëîâèÿ äëÿ ñâÿçûâàíèÿ Î2 (ðèñ. 3, Á).  ðåçóëüòàòå ñðîäñòâî ãåìà ê ÑÎ â áåëêàõ âñåãî â 200 ðàç ïðåâûøàåò åãî ñðîäñòâî ê Î2.

Ñíèæåíèå ñðîäñòâà ãåìñîäåðæàùèõ áåëêîâ ê ÑÎ èìååò âàæíîå áèîëîãè÷åñêîå çíà÷åíèå. ÑÎ îáðàçóåòñÿ â íåáîëüøèõ êîëè÷åñòâàõ ïðè êàòàáîëèçìå íåêîòîðûõ âåùåñòâ, â ÷àñòíîñòèãåìà. Ýòîò ýíäîãåííî îáðàçóþùèéñÿ ÑÎ áëîêèðóåò îêîëî 1% ãåìñîäåðæàùèõ áåëêîâ. Åñëè áû ñðîäñòâî òåìà ê ÑÎ íå óìåíüøàëîñü ïîä âëèÿíèåì áåëêîâîãî îêðóæåíèÿ, ýíäîãåííûé îêñèä óãëåðîäà ìîã áû âûçûâàòü ñåðü¸çíûå îòðàâëåíèÿ.

×åòâåðòè÷íàÿ ñòðóêòóðà ãåìîãëîáèíà.

×åòûðå ïîëèïåïòèäíûå öåïè, ñîåäèí¸ííûå âìåñòå, îáðàçóþò ïî÷òè ïðàâèëüíóþ ôîðìó øàðà, ãäå êàæäàÿ à-öåïü êîíòàêòèðóåò ñ äâóìÿ â-öåïÿìè (ðèñ. 4).

Òàê êàê â îáëàñòè êîíòàêòà ìåæäó à1- è â1-, à òàêæå ìåæäó à2- è â2-öåïÿìè íàõîäèòñÿ ìíîãî ãèäðîôîáíûõ ðàäèêàëîâ, òî ìåæäó ýòèìè ïîëèïåïòèäíûìè öåïÿìè ôîðìèðóåòñÿ ñèëüíîå ñîåäèíåíèå çà ñ÷¸ò âîçíèêíîâåíèÿ â ïåðâóþ î÷åðåäü ãèäðîôîáíûõ, à òàêæå èîííûõ è âîäîðîäíûõ ñâÿçåé.  ðåçóëüòàòå îáðàçóþòñÿ äèìåðû à1â1, è à2â2. Ìåæäó ýòèìè äèìåðàìè â òåòðàìåðíîé ìîëåêóëå ãåìîãëîáèíà âîçíèêàþò â îñíîâíîì ïîëÿðíûå (èîííûå è âîäîðîäíûå) ñâÿçè, ïîýòîìó ïðè èçìåíåíèè ðÍ ñðåäû â êèñëóþ èëè ùåëî÷íóþ ñòîðîíó â ïåðâóþ î÷åðåäü ðàçðóøàþòñÿ ñâÿçè ìåæäó äèìåðàìè. Êðîìå òîãî, äèìåðû ñïîñîáíû ëåãêî ïåðåìåùàòüñÿ îòíîñèòåëüíî äðóã äðóãà.

Òàê êàê ïîâåðõíîñòü ïðîòîìåðîâ íåðîâíàÿ, ïîëèïåïòèäíûå öåïè â öåíòðàëüíîé îáëàñòè íå ìîãóò ïëîòíî ïðèëåãàòü äðóã ê äðóãó, â ðåçóëüòàòå â öåíòðå ôîðìèðóåòñÿ «öåíòðàëüíàÿ ïîëîñòü», ïðîõîäÿùàÿ ñêâîçü âñþ ìîëåêóëó ãåìîãëîáèíà.

Ñâÿçûâàíèå ãåìîãëîáèíà ñ Î2 â ë¸ãêèõ è åãî äèññîöèàöèÿ èç êîìïëåêñà â òêàíÿõ.

Îñíîâíàÿ ôóíêöèÿ ãåìîãëîáèíà – äîñòàâêà Î2 îò ë¸ãêèõ ê òêàíÿì. Îëèãîìåðíàÿ ñòðóêòóðà ãåìîãëîáèíà îáåñïå÷èâàåò áûñòðîå íàñûùåíèå åãî êèñëîðîäîì â ë¸ãêèõ (îáðàçîâàíèå îêñèãåìîãëîáèíà – Íb(Î2) 4), âîçìîæíîñòü îòùåïëåíèÿ êèñëîðîäà îò ãåìîãëîáèíà â êàïèëëÿðàõ òêàíåé ïðè îòíîñèòåëüíî âûñîêîì ïàðöèàëüíîì äàâëåíèè Î2, à òàêæå âîçìîæíîñòü ðåãóëÿöèè ñðîäñòâà ãåìîãëîáèíà ê Î2 â çàâèñèìîñòè îò ïîòðåáíîñòåé òêàíåé â êèñëîðîäå.

Êîîïåðàòèâíûå èçìåíåíèÿ êîíôîðìàöèè ïðîòîìåðîâ.

Î2 ñâÿçûâàåòñÿ ñ ïðîòîìåðàìè ãåìîãëîáèíà ÷åðåç Fe2+, êîòîðûé ñîåäèí¸í ñ ÷åòûðüìÿ àòîìàìè àçîòà ïèððîëüíûõ êîëåö òåìà è àòîìîì àçîòà Ãèñ F8 áåëêîâîé ÷àñòè ïðîòîìåðà. Ñâÿçûâàíèå Î2 ñ îñòàâøåéñÿ ñâîáîäíîé êîîðäèíàöèîííîé ñâÿçüþ Fe2+ ïðîèñõîäèò ïî äðóãóþ ñòîðîíó îò ïëîñêîñòè ãåìà â îáëàñòè Ãèñ Å7 (àíàëîãè÷íî òîìó, êàê ýòî ïðîèñõîäèò ó ìèîãëîáèíà). Ãèñ Å7 íå âçàèìîäåéñòâóåò ñ Î2, íî îáåñïå÷èâàåò îïòèìàëüíûå óñëîâèÿ äëÿ åãî ñâÿçûâàíèÿ (ðèñ. 4).

 äåçîêñèãåìîãëîáèíå áëàãîäàðÿ êîâàëåíòíîé ñâÿçè ñ áåëêîâîé ÷àñòüþ àòîì Fe2+ âûñòóïàåò èç ïëîñêîñòè ãåìà â íàïðàâëåíèè Ãèñ F8. Ïðèñîåäèíåíèå Î2 ê àòîìó Fe2+ îäíîãî ïðîòîìåðà âûçûâàåò åãî ïåðåìåùåíèå â ïëîñêîñòü ãåìà, çà íèì ïåðåìåùàþòñÿ îñòàòîê Ãèñ F8 è ïîëèïåïòèäíàÿ öåïü, â ñîñòàâ êîòîðîé îí âõîäèò. Òàê êàê ïðîòîìåð ñâÿçàí ñ îñòàëüíûìè ïðîòîìåðàìè, à áåëêè îáëàäàþò êîíôîðìàöèîííîé ëàáèëüíîñòüþ, ïðîèñõîäèò èçìåíåíèå êîíôîðìàöèè âñåãî áåëêà. Êîíôîðìàöèîííûå èçìåíåíèÿ, ïðîèçîøåäøèå â äðóãèõ ïðîòîìåðàõ, îáëåã÷àþò ïðèñîåäèíåíèå ñëåäóþùåé ìîëåêóëû Î2, ÷òî âûçûâàåò íîâûå êîíôîðìàöèîííûå èçìåíåíèÿ â áåëêå è óñêîðåíèå ñâÿçûâàíèÿ ñëåäóþùåé ìîëåêóëû Î2. ×åòâ¸ðòàÿ ìîëåêóëà Î2 ïðèñîåäèíÿåòñÿ ê ãåìîãëîáèíó â 300 ðàç ëåã÷å, ÷åì ïåðâàÿ ìîëåêóëà (ðèñ. 6).

Èçìåíåíèå êîíôîðìàöèè (à ñëåäîâàòåëüíî è ôóíêöèîíàëüíûõ ñâîéñòâ) âñåõ ïðîòîìåðîâ îëèãîìåðíîãî áåëêà ïðè ïðèñîåäèíåíèè ëèãàíäà òîëüêî ê îäíîìó èç íèõ íîñèò íàçâàíèå êîîïåðàòèâíûõ èçìåíåíèé êîíôîðìàöèè ïðîòîìåðîâ.

Àíàëîãè÷íûì îáðàçîì â òêàíÿõ äèññîöèàöèÿ êàæäîé ìîëåêóëû Î2 èçìåíÿåò êîíôîðìàöèþ âñåõ ïðîòîìåðîâ è îáëåã÷àåò îòùåïëåíèå ïîñëåäóþùèõ ìîëåêóë Î2.

2,3 – Áèôîñôîãëèöåðàò – àëëîñòåðòåñêèé ðåãóëÿòîð ñðîäñòâà ãåìîãëîáèíà ê Î2.

2,3 – Áèôîñôîãëèöåðàò (ÁÔÃ) – âåùåñòâî, ñèíòåçèðóåìîå â ýðèòðîöèòàõ èç ïðîìåæóòî÷íîãî ïðîäóêòà îêèñëåíèÿ ãëþêîçû 1,3 – áèôîñôîãëèöåðàòà.

ãåìîãëîáèí áåëîê ìèîãëîáèí îëèãîìåðíûé

2,3 – Áèôîñôîãëèöåðàò

Áèñôîñôîãëèöåðàò â êàïèëëÿðàõ òêàíåé, ñâÿçûâàÿñü ñ äåçîêñèãåìîãëîáèíîì, îáëåã÷àåò äèññîöèàöèþ Î2 èç îêñèãåíèðîâàííîãî ÍÜ. öåíòðå òåòðàìåðíîé ìîëåêóëû ãåìîãëîáèíà íàõîäèòñÿ ïîëîñòü. Åå îáðàçóþò àìèíîêèñëîòíûå îñòàòêè âñåõ 4 ïðîòîìåðîâ (ðèñ. 4).

 ìîëåêóëå äåçîêñèãåìîãëîáèíà ïî ñðàâíåíèþ ñ îêñèãåìîãëîáèíîì èìåþòñÿ äîïîëíèòåëüíûå èîííûå ñâÿçè, ñîåäèíÿþùèå ïðîòîìåðû. Âñëåäñòâèå ýòîãî ðàçìåðû öåíòðàëüíîé ïîëîñòè ìåíÿþòñÿ: óâåëè÷èâàþòñÿ â äåçîêñèãåìîãëîáèíå è óìåíüøàþòñÿ â îêñèãåìîãëîáèíå.

Öåíòðàëüíàÿ ïîëîñòü ÿâëÿåòñÿ ìåñòîì ïðèñîåäèíåíèÿ 2,3 – áèñôîñôîãëèöåðàòà (2,3 – ÁÔÃ) ê ãåìîãëîáèíó (ðèñ. 7). Èç-çà ðàçëè÷èÿ â ðàçìåðàõ öåíòðàëüíîé ïîëîñòè 2,3 – ÁÔà ìîæåò ïðèñîåäèíÿòüñÿ òîëüêî ê äåçîêñèãåìîãëîáèíó.

2,3 – ÁÔà ïðèñîåäèíÿåòñÿ ê ãåìîãëîáèíó â èíîì ïî ñðàâíåíèþ ñ Î2 ó÷àñòêå. Òàêîé ëèãàíä íàçûâàåòñÿ àëëîñòåðè÷åñêèì. Öåíòð, ãäå ñâÿçûâàåòñÿ àëëîñòåðè÷åñêèé ëèãàíä, íàçûâàåòñÿ àëëîñòåðè÷åñêèì öåíòðîì.

Ðåãóëÿòîðíûå ñâîéñòâà îëèãîìåðíîãî áåëêà ãåìîãëîáèíà

Òàêèì îáðàçîì, îëèãîìåðíûé áåëîê ãåìîãëîáèí, â îòëè÷èå îò ìîíîìåðíîãî ðîäñòâåííîãî áåëêà ìèîãëîáèíà, ñïîñîáåí ïðèñîåäèíÿòü ê ñïåöèôè÷åñêèì ó÷àñòêàì 4 ðàçëè÷íûõ ëèãàíäà: Î2, Í+, ÑÎ2 è ÁÔÃ. Âñå ýòè ëèãàíäû ïðèñîåäèíÿþòñÿ ê ïðîñòðàíñòâåííî ðàçîáù¸ííûì ó÷àñòêàì, íî êîíôîðìàöèîííûå èçìåíåíèÿ áåëêà â ìåñòå ïðèñîåäèíåíèÿ îäíîãî ëèãàíäà ïåðåäàþòñÿ íà âåñü îëèãîìåðíûé áåëîê è èçìåíÿþò ñðîäñòâî ê íåìó äðóãèõ ëèãàíäîâ. Òàê, êîëè÷åñòâî ïîñòóïàþùåãî â òêàíè Î2 çàâèñèò íå òîëüêî îò ïàðöèàëüíîãî äàâëåíèÿ Î2, íî è êîíöåíòðàöèè àëëîñòåðè÷åñêèõ ëèãàíäîâ, ÷òî óâåëè÷èâàåò âîçìîæíîñòü ðåãóëÿöèè ôóíêöèé ãåìîãëîáèíà. Ñëåäîâàòåëüíî, áëàãîäàðÿ âîçäåéñòâèþ ðåãóëÿòîðíûõ ëèãàíäîâ îëèãîìåðíûå áåëêè ñïîñîáíû ïðèñïîñàáëèâàòü ñâîþ êîíôîðìàöèþ è ôóíöèþ ê èçìåíåíèÿì, ïðîèñõîäÿùèì â îêðóæàþùåé ñðåäå.

Ëèòåðàòóðà

ãåìîãëîáèí áåëîê ìèîãëîáèí îëèãîìåðíûé

1. Áèîõèìèÿ: Ó÷åáíèê/ Ïîä. ðåä. Å.Ñ. Ñåâåðèíà. – Ì.: – ÃÝÎÒÀÐ-ÌÅÄ, 2003. – ñ. 45-53.

2. Ð. Ìàððè, Ä. Ãðåííåð, Ï. Ìåéåñ, Â. Ðîäóýëë. Áèîõèìèÿ ÷åëîâåêà:  2-õ òîìàõ. Ò.1. Ïåð. ñ àíãë.: – Ì.: Ìèð, 1993. – ñ. 52.

3. https://idoktor.info/biohimiya/stroenie-svoistva-i-funktsii-belkov

Ðàçìåùåíî íà Allbest.ru

Источник