Миоглобин и гемоглобин выполняют транспортную функцию
МИОГЛОБИН – сложный глобулярный белок, третьего уровня структурной организации, молекула которого состоит из 1 полипептидной цепи и содержит 153 аминокислоты. В миоглобине содержится железопорфириновая группа (гем), и он способен обратимо присоединять кислород.
Миоглобин содержится в клетках скелетных мышц. Пептидная цепь миоглобина напоминает длинную колбасу, причудливо скрученную. Было показано, что остов молекулы миоглобина состоит из 8 относительно прямолинейных отрезков, разделенных между собой местами сгибов. Каждый отрезок закручен в виде a-спирали. Все спирали являются правыми. 70 % аминокислотных остатков входят в состав спирализованных участков.
Свойства миоглобина:
1. молекула миоглобина компактна (внутри нее может уместиться 4Н2О);
2. все полярные R- группы аминокислотных остатков расположены на внешней поверхности молекулы и находятся в гидратированном состоянии, т.е. связаны с Н2О;
3. неполярные, или гидрофобные R- группы располагаются в глубине молекулы и защищены от соприкосновения с Н2О;
4. остатки пролина встречаются только в метах сгибов пептидной цепи (пролин нарушает a-спираль). В местах сгибов находятся и другие аминокислоты, которые неспособны легко образовывать a-спираль (изолейцин, серин), и аминокислоты, боковые цепи которых несут одинаковые заряды при рН7;
5. у миоглобинов, выделенных из разных млекопитающих, конформация пептидных цепей сходна (но они несколько отличаются по аминокислотному составу).
ГЕМ – комплекс порфирина и иона железа в степени окисления +2.
Ион железа встроен в кольцо порфирина таким образом, что четыре координационные связи из шести (в состоянии гибридизации sp3d2 связи у шестикоординационного железа направлены к вершинам октаэдра) затрачены на образование связей с атомами азота, еще одна связана с азотом имидазольного остатка ГИС полипептидной цепи (проксимальный Гистидин F8), а другая- также с имидазольным остатком другого ГИС (дистальный ГИС Е7). Молекула кислорода присоединяется между остатком дистального ГИС и железом. Изменения степени окисления железа при этом не происходит. Порфириновое кольцо (ГЕМ) не находится на плоскости молекулы белка, а частично погружено в него. Молекула кислорода присоединяется к гему, входя как бы через открывающуюся дверцу. Пока остается несным, дожидается молекула кислорода случайного открывания двери, или существует какой-то механизм, пускающий кислород к гему.
Миоглобин сосредоточен, главным образом, в мышцах и его главной функцией является хранение кислорода. Скорость насыщения миоглобина кислородом намного превышает таковую для гемоглобина. Миоглобин мало приспособлен для транспортировки кислорода из легких в ткани, поскольку скорость отдачи кислорода в тканях невелика (при давлении 1 мм рт. ст. примерно половина миоглобина все еще не отдает кислород).
Вопросы транспортировки кислорода решаются при участии белка четвертичной структуры – гемоглобина.
ЧЕТВЕРТИЧНАЯ СТРУКТУРА ГЕМОГЛОБИНА. При помощи рентгеноструктурного анализа Перутцем и его сотрудниками в Кембридже установлены третичная и четвертичная структуры гемоглобина. Гемоглобин содержится в эритроцитах и служит для переноса кислорода. Молекулярная масса гемоглобина 64500. Молекула состоит из 4 отдельных полипептидных цепей: 2 a-цепей (141 остаток аминокислот) и 2 b- цепей (146 остатков аминокислот в каждой), каждая из которых связана нековалентной связью с остатками гема. Каждая из 4 отдельных цепей гемоглобина свернута нерегулярным образом и состоит из ряда a- спиральных участков, разделенных местами сгибов.
a- и b- цепи гемоглобина примерно на 70 % состоят из a-спиральных участков. По своей третичной структуре a- и b-цепи очень сходны, они образованы из a- спиральных участков одинаковой длины, согнутых под одинаковыми углами и в одних и тех же направлениях. Третичная структура a- и b-цепей гемоглобина очень сходна с третичной структурой единственной цепи миоглобина. Сходная функция гемоглобина и миоглобина, обусловленная способностью обратимо связывать О2, объясняется сходством третичной структуры.
Согласно данным рентгеноструктурного анализа молекула гемоглобина по своей форме приближается к сфере диаметром ~ 5,5 нм. 4 полипептидные цепи уложены относительно друг друга приблизительно в виде тетраэдра, в результате чего возникает характерная четвертичная структура гемоглобина.
Это очень компактная структура. Большинство гидрофобных R- групп аминокислот находится внутри глобулы, а большинство гидрофильных R- групп – снаружи. В молекуле гемоглобина возникает небольшое число контактов между одинаковыми цепями (2 a- и 2 b- цепями) и множество контактов между a- и b- цепями. В образовании таких контактов принимают участие в основном гидрофобные R- группы аминокислотных остатков.
При присоединении к гемоглобину кислорода расстояние между 2 b- цепями гемоглобина уменьшается и изменяется четвертичная структура. Таким образом, гемоглобин и оксигемоглобин (насыщенный кислородом) различаются по своей четвертичной структуре.
Четвертичная структура олигомерных белков также определяется первичной аминокислотной последовательностью входящих в их состав отдельных полипептидных цепей. Олигомерные белки (гемоглобин) обнаруживают способность к самосборке.
Главное отличие гемоглобина от миоглобина заключается в проявлении особого рода эффектов – кооперативных, влияющих на скорости присоединения- отсоединения молекул кислорода. Каждая молекула гемоглобина способна присоединять и переносить четыре молекулы кислорода, при этом кооперативность проявляется в том, что как присоединение, так и отсоединение каждой последующей молекулы кислорода облегчается в результате структурных изменений в конформации молекулы, которых у гемоглобина имеется две основных- оксигенированная и дезоксигенированная. Промежуточные состояния нестабильны. Предполагается следующий механизм кооперативного эффекта. Присоединение первой молекулы кислорода приводит к тому, что атом железа смещается от своего места примерно на 0,4-0,6 ангстрем, вызывая изменения конформации субъединицы. Изменившаяся конформация по аллостерическому эффекту облегчает присоединение кислорода к другой субъединице и т.д. Это позволяет максимально ускорить процесс присоединения кислорода в легких (рО2 = 100 мм рт. ст.). При переносе оксигенированного гемоглобина в капилляры тканей (рО2 = 5 мм рт. ст.) отсоединение молекул кислорода протекает также быстро, по кооперативному эффекту. Известны, впрочем, и химические регуляторы скорости и полноты присоединения кислорода. К ним, в частности, относится 2,3- дифосфоглицериновая кислота. Она облегчает присоединение кислорода у организмов, обитающих в высокогорных районах.
- 2020
Способность связывать молекулу кислорода с гемовыми белками – это то, что имеет значение в обеих молекулах. Гемоглобин называется тетрамерным гемопротеином, а миоглобин называется мономерным белком. Гемоглобин систематически обнаруживается по всему телу, а миоглобин – только в мышечных тканях.
Гемоглобин изготовлен из белково-протезной группы и хорошо известен как переносчик кислородного пигмента. Это самая важная часть для поддержания жизни, так как она транспортирует кислород и углекислый газ по всему организму.
Миоглобин работает только на клетки мышц, получая кислород из эритроцитов и далее доставляя его к митохондриальной органелле клеток мышц. Впоследствии этот кислород используется для клеточного дыхания для создания энергии. В этой статье мы рассмотрим замечательные моменты, которые различают гемоглобин и миоглобин.
Сравнительная таблица
Основа для сравнения | Гемоглобин | Миоглобин |
---|---|---|
Количество цепей | Гемоглобин имеет 4 цепи двух разных типов – альфа и бета, дельта, гамма или эпсилон (в зависимости от типа гемоглобина). | Он содержит отдельные полипептидные цепи. |
Тип конструкции | Тетрамер | Мономер. |
Персональный | Связывает CO2, CO, NO, O2 и H +. | Связывается с O2, плотно и крепко. |
Их присутствие | Системно по всему телу. | В мышечных клетках. |
Типы кривой | Сигмовидная кривая связывания. | Гиперболическая кривая. |
Также известен как | Hb. | Миллибар |
Роль | Гемоглобин транспортируется вместе с кровью по всему телу и переносит кислород. | Миоглобин поставляет кислород только мышцам, что полезно во время голодания кислорода. |
Концентрация в крови | Высоко в РБК. | Низкий. |
Определение гемоглобина
Гемоглобин – это молекулы гемового белка, содержащиеся в эритроцитах, переносящие кислород из легких в ткани организма и возвращающие углекислый газ из тканей обратно в легкие.
Гемоглобин имеет меньшее сродство к связывающему кислороду, а его концентрация выше в эритроцитах (эритроцитах). Поэтому, когда кислород связывается с первой субъединицей гемоглобина, он превращается в четвертичную структуру белка и, таким образом, облегчает связывание других молекул.
В организме должен быть стандартный уровень Hb, который может варьироваться в зависимости от возраста и пола человека. Анемия – это состояние, при котором снижается уровень гемоглобина или эритроцитов в крови.
Структура гемоглобина
Гемоглобин содержит гемовую группу, которая является белком и удерживается нековалентно . Разница заключается в части глобина, которая имеет разное расположение аминокислот у разных животных.
« Гем » – это центральное железо, соединенное четырьмя пиррольными кольцами. Железо находится в форме иона трехвалентного железа, в то время как пиррольные кольца присоединены метиленовыми мостиками.
Глобин – белковая часть, представляет собой димер гетеродимера (альфа-бета), что означает, что четыре молекулы белка связаны, в которых могут присутствовать две альфа-глобулина и две другие цепи бета, дельта, гамма или эпсилон-глобулин, что зависит от тип гемоглобина. Эта цепь глобулина содержит «порфириновое» соединение, содержащее железо.
Гемоглобин (человек) состоит из двух альфа-субъединиц и двух бета-субъединиц, где каждая альфа-субъединица имеет 144 остатка, а бета-субъединица имеет 146 остатков. Помогает в транспортировке кислорода по всему организму.
Важность гемоглобина
- Придает цвет крови.
- Гемоглобин действует как носитель для переноса кислорода, а также углекислого газа.
- Он играет роль в метаболизме эритроцитов.
- Они действуют как физиологически активные катаболиты.
- Помогает в поддержании pH.
Типы гемоглобина
- Гемоглобин А1 (Hb-А1).
- Гемоглобин А2 (Hb-A2).
- Гемоглобин А3 (Hb-A3).
- Эмбриональный гемоглобин.
- Гликозилированный гемоглобин.
- Гетоглобин плода (Hb-A1).
Определение миоглобина
Миоглобин является разновидностью гемовых белков, служащих внутриклеточным хранилищем кислорода. Во время лишения кислорода связанный кислород, называемый оксимиоглобином, высвобождается из его связанной формы и далее используется для других метаболических целей.
Так как миоглобин имеет третичную структуру, которая легко растворяется в воде, в которой его свойства, которые экспонируются на поверхности молекул, являются гидрофильными, в то время как те молекулы, которые упакованы внутри молекулы, являются гидрофобными по природе. Как уже обсуждалось, это мономерный белок с молекулярной массой 16 700, что составляет одну четвертую от гемоглобина.
Структура миоглобина
Он состоит из не спиральных областей, от A до H, которые являются правосторонними альфа-спиралями, и 8 в количестве. Хотя структура миоглобина похожа на структуру гемоглобина.
Миоглобин также содержит белок под названием гем, который содержит железо и придает белкам красный и коричневый цвет. Он существует во вторичной структуре белка, имеющего линейную цепочку аминокислот. Он содержит одну субъединицу альфа-спиралей, а бета-листы и наличие водородной связи отмечают его стабилизацию.
Миоглобин помогает в транспортировке и хранении кислорода в мышечных клетках, который помогает во время работы мышц, обеспечивая их энергией. Кислород связывается с миоглобином более плотно, потому что венозная кровь объединяется прочнее, чем гемоглобин.
Миоглобин в основном содержится в мышцах, что полезно для организмов при дефиците кислорода. Киты и тюлени содержат большое количество миоглобина. Эффективность подачи кислорода ниже, чем у гемоглобина.
Важность миоглобина
- Миоглобин обладает сильным сродством к связыванию с кислородом, что позволяет ему эффективно хранить его в мышцах.
- Помогает организму в голодной ситуации с кислородом, особенно в анаэробной ситуации.
- Носите кислород к клеткам мышц.
- Также помогу в регулировании температуры тела.
Основные различия между гемоглобином и миоглобином
Обе молекулы обладают способностью связывать кислород, как обсуждалось выше, ниже приведены ключевые различия.
- Гемоглобин имеет четыре цепи двух разных типов – альфа и бета, гамма или эпсилон (в зависимости от типа гемоглобина) и образует структуру тетрамера, в то время как миоглобин содержит одну полипептидную цепь, так называемый мономер, хотя обе имеют центральный ион как железо и лиганд связываются как кислород.
- Гемоглобин связывается с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин связывается только с O2.
- Он поставляет гемоглобин вместе с кровью системно по всему телу, в то время как миоглобин поставляет кислород только мышцам .
- Гемоглобин, который также известен как Hb, присутствует в большем количестве в эритроцитах, чем миоглобин, также известный как Mb .
- Гемоглобин транспортируется вместе с кровью во все части тела, также помогает в транспортировке кислорода; Миоглобин обеспечивает кислород только для мышц, что полезно, когда в крови много кислорода.
сходства
Оба содержат железосодержащий белок в качестве центрального металла.
Оба являются глобулярным белком.
Оба имеют лиганд в виде кислорода (O2).
Вывод
Таким образом, мы можем сказать, что гемоглобин и миоглобин одинаково и физиологически важны из-за их способности связывать кислород. Это были первые молекулы, трехмерная структура которых была обнаружена с помощью рентгеновской кристаллографии. Нарушения в составляющих могут привести к серьезным заболеваниям и расстройствам.
Гемоглобин и миоглобин различаются по сродству связывания с кислородом. Но их центральный ион металла такой же, как и те же лиганд-связывающие молекулы. Они оба важны для тела, так как без них невозможно представить жизнь
Нет похожих сообщений.
Что собой представляет миоглобин и зачем он нужен организму?
Основные функции миоглобина
Миоглобин относится к белкам, которые содержат в своём составе железо, формируя гем. Основным местом локализации этого белка является мышечная ткань. Этот тип ткани образует скелетные мышцы, а также самую главную мышцу нашего организма – сердце.
Мышечная ткань формирует миокард – слой сердца, который обеспечивает его сократительную функцию.
Главной задачей миоглобина является формирование депо для кислорода. То есть при недостатке кислорода миоглобин будет снабжать им мышцы, обеспечивая мышечное сокращение.
Отличие от гемоглобина
Миоглобин созвучен с гемоглобином. Они чем-то похожи между собой, но и есть ряд отличий.
Миоглобин и гемоглобин имеют в своём составе гем, содержащий железо. Именно эта часть молекулы позволяет связываться с кислородом.
Различие между этими белками состоит в функциях, выполняемых ими. Так, гемоглобин является транспортным белком – переносит газы в крови, в том числе и кислород. А миоглобин откладывает про запас этот кислород, который принёс гемоглобин в клетки.
Техника определения миоглобина в крови и других биологических жидкостях
Забор материала для анализа
Диагностически значимым является определение уровня миоглобина в крови. В этом случае материалом для исследования будет венозная кровь, из которой затем получат сыворотку.
Также есть смысл определить наличие миоглобина в моче.
Суть метода
В современных лабораториях определение миоглобина в крови производится иммунотурбидиметрическим методом. Суть этого метода заключается в оценке степени агглютинации миоглобина и специальных антител к нему, которые соединены с латексными частицами.
Латексные частицы позволяют визуализировать взаимодействие миоглобина и антител. Это взаимодействие изменяет показатели пробы, которые фиксируют на специальном приборе. После чего производят вычисление уровня миоглобина в крови.
В связи с тем, что в мочу может попадать миоглобин, имеет смысл определять его в этой биологической жидкости. Это может быть качественное определение при добавлении сульфата аммония. Сульфат аммония позволит обнаружить в моче миоглобин.
Обнаружение в моче миоглобина называется миоглобинурия.
Методами сухой химии, которые используются при общем анализе мочи, можно определить лишь наличие крови в моче. В этот показатель могут входить любые белки мочи, которые содержат железо. Что является не самым информативным методом.
Для того чтобы различить, какие конкретные белки обнаружены в моче, применяется электрофорез. В зависимости от массы и заряда белки будут распределяться по-разному, что предоставит возможность различить их между собой. Это имеет важное значение при диагностике состояний, вызвавших появление крови в моче.
Показания для направления на анализ
Для того чтобы направить пациента для определения уровня миоглобина в крови, должны быть симптомы, указывающие на патологию мышечной ткани.
Определение уровня миоглобина проводится при:
- подозрении на повреждение сердечной мышцы в результате инфаркта или другого процесса;
- повреждении скелетных мышц, например, при травме или воспалительных процессах;
- оценке степени тяжести повреждения почек.
Учитывая тот факт, что миоглобин легко проходит сквозь почечный фильтр, избыток в крови этого белка может оказывать повреждающее действие на почки.
Интерпретация результатов
Норма миоглобина в биологических жидкостях
В сыворотке крови уровень миоглобина у мужчин и женщин различается. У детей с четырнадцати лет уровень этого белка становится примерно таким же, как и у взрослых.
У женщин в норме концентрация миоглобина составляет 12 – 76 микрограмм на литр (мкг/л), а у лиц мужского пола – 19 – 92 мкг/л. Эти данные являются ориентировочными, так как в каждой лаборатории в зависимости от производителя реагентов они могут различаться.
В моче в норме миоглобин почти не определяется.
Понижение концентрации миоглобина
Уровень миоглобина настолько мал, что даже если в крови обнаружат низкие концентрации, это не имеет диагностической значимости. Некоторые лаборатории считают нижней границей нормы 0 мкг/л.
Высокие концентрации
Повышение концентрации миоглобина в крови играет важную роль в диагностике ряда патологических состояний.
При инфаркте миокарда отмечается увеличение концентрации миоглобина в течение 2 часов. Однако этот показатель не является строго специфичным для данной патологии.
Креатинфосфокиназа-МВ и тропонины является более специфичными маркерами повреждения миокарда, чем миоглобин.
Также при повреждении мышечной ткани в результате её отмирания, травмы, нарушения кровоснабжения будет отмечаться увеличение содержания миоглобина в крови. Такое наблюдается при таких патологиях, как дерматомиозит, дистрофия мышечной ткани и др.
При судорогах или после проведения операции отмечается повышение концентрации миоглобина в крови.
Также высокие концентрации миоглобина в крови приводят к усиленному выведению его с мочой, что отразится на уровне этого белка в моче. Избыток миоглобина приведёт к поражению почек и развитию почечной недостаточности.
Что может влиять на изменение уровня миоглобина
Имеется ряд факторов, которые могут повлиять на уровень миоглобина в крови. К ним относятся:
- избыточная физическая нагрузка;
- употребление алкоголя накануне сдачи анализа;
- сдача крови не натощак;
- внутримышечные уколы;
- приёме Ацетилхолина и Сукцинилхолина.
Поэтому перед тем как идти сдавать кровь, следует правильно подготовиться и исключить факторы, которые могут привести к неправильному результату.
Заключение
Миоглобин является белком мышечной ткани, который участвует в депонировании кислорода. При повреждении этой ткани белок выходит в кровь, что отражается в анализе крови и мочи. Миоглобин помогает в подтверждении диагноза инфаркт миокарда, однако не является единственным показателем, по которому проводится диагностика.
Выпускница факультета медико-профилактического дела и медицинской биохимии, отделения медицинской биохимии СГМУ (бывш. АГМА). Специальность по диплому – врач-биохимик (врач клинической лабораторной диагностики).
Оценка статьи
Мы приложили много усилий, чтобы Вы смогли прочитать эту статью, и будем рады Вашему отзыву в виде оценки. Автору будет приятно видеть, что Вам был интересен этот материал. Спасибо!
Загрузка…