Насыщение гемоглобина кислородом снижается

Насыщение гемоглобина кислородом снижается thumbnail

Оглавление темы “Вентиляция легких. Перфузия легких кровью.”:

1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.

2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.

3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.

4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.

5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.

6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

8. Углекислый газ. Транспорт углекислого газа.

9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..

10. Регуляция дыхания. Регуляция вентиляции легких.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Молекула гемоглобина может находиться в двух формах — напряженной и расслабленной. Расслабленная форма гемоглобина имеет свойство насыщаться кислородом в 70 раз быстрее, чем напряженная. Изменение фракций напряженной и расслабленной формы в общем количестве гемоглобина в крови обусловливает S-образный вид кривой диссоциации оксигемоглобина, а следовательно, так называемое сродство гемоглобина к кислороду. Если вероятность перехода от напряженной формы гемоглобина к расслабленной больше, то возрастает сродство гемоглобина к кислороду, и наоборот. Вероятность образования указанных фракций гемоглобина изменяется в большую или меньшую сторону под влиянием нескольких факторов.

Основной фактор — это связывание кислорода с геминовой фуппой молекулы гемоглобина. При этом чем больше геминовых фупп гемоглобина связывают кислород в эритроцитах, тем более легким становится переход молекулы гемоглобина к расслабленной форме и тем выше их сродство к кислороду. Поэтому при низком Р02, что имеет место в метаболически активных тканях, сродство гемоглобина к кислороду ниже, а при высоком Р02 — выше. Как только гемоглобин захватывает кислород, повышается его сродство к кислороду и молекула гемоглобина становится насыщенной при связывании с четырьмя молекулами кислорода.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Когда эритроциты, содержащие гемоглобин, достигают тканей, то кислород из эритроцитов диффундирует в клетки. В мышцах он поступает в своеобразного депо кислорода — в молекулы миоглобина, из которого кислород используется в биологическом окислении мышц.

Диффузия кислорода из гемоглобина эритроцитов в ткани обусловлена низким Р02 в тканях — 35 мм рт. ст. Внутри клеток тканей напряжение кислорода, необходимое для поддержания нормального метаболизма, составляет еще меньшую величину — не более 1 кПа. Поэтому кислород путем диффузии из капилляров достигает метаболически активных клеток. Некоторые ткани приспособлены к низкому содержанию Р02 в капиллярах крови, что компенсируется высокой плотностью капилляров на единицу объема тканей. Например, в скелетной и сердечной мышцах Р02 в капиллярах может снизиться чрезвычайно быстро во время сокращения. В мышечных клетках содержится белок миоглобин, который имеет более высокое сродство к кислороду, чем гемоглобин. Миоглобин интенсивно насыщается кислородом и способствует его диффузии из крови в скелетную и сердечную мышцы, где он обусловливает процессы биологического окисления. Эти ткани способны экстрагировать до 70 % кислорода из крови, проходящей через них, что обусловлено снижением сродства гемоглобина к кислороду под влиянием температуры тканей и рН.

Эффект рН и температуры на сродство гемоглобина к кислороду. Молекулы гемоглобина способны реагировать с ионами водорода, в результате этой реакции происходит снижение сродства гемоглобина к кислороду. При насыщении гемоглобина менее 100 % низкое рН понижает связывание кислорода с гемоглобином — кривая диссоциации оксигемоглобина смещается вправо по оси х. Это изменение свойства гемоглобина под влиянием ионов водорода называется эффектом Бора. Метаболически активные ткани продуцируют кислоты, такую как молочная, и С02. Если рН плазмы крови снижается от 7,4 в норме до 7,2, что имеет место при сокращении мыщц, то концентрация кислорода в ней будет возрастать вследствие эффекта Бора. Например, при постоянном рН 7,4 кровь отдавала бы порядка 45 % кислорода, т. е. насыщение гемоглобина кислородом снижалось до 55 %. Однако когда рН снижается до 7,2, кривая диссоциации смещается по оси х вправо. В результате насыщение гемоглобина кислородом падает до 40 %, т. е. кровь может отдавать в тканях до 60 % кислорода, что на 1/з больше, чем при постоянном рН.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Метаболически активные ткани повышают продукцию тепла. Повышение температуры тканей при физической работе изменяет соотношение фракций гемоглобина в эритроцитах и вызывает смещение кривой диссоциации оксигемоглобина вправо вдоль оси х. В результате большее количество кислорода будет освобождаться из гемоглобина эритроцитов и поступать в ткани.

Эффект 2,3-дифосфоглицерата (2,3-ДФГ) на сродство гемоглобина к кислороду. При некоторых физиологических состояниях, например при понижении Р02 в крови ниже нормы (гипоксия) в результате пребывания человека на большой высоте над уровнем моря, снабжение тканей кислородом становится недостаточным. При гипоксии может понижаться сродство гемоглобина к кислороду вследствие увеличения содержания в эритроцитах 2,3-ДФГ. В отличие от эффекта Бора, уменьшение сродства гемоглобина к кислороду под влиянием 2,3-ДФГ не является обратимым в капиллярах легких. Однако при движении крови через капилляры легких эффект 2,3-ДФГ на снижение образования оксигемоглобина в эритроцитах (плоская часть кривой диссоциации оксигемоглобина) выражен в меньшей степени, чем отдача кислорода под влиянием 2,3-ДФГ в тканях (наклонная часть кривой), что обусловливает нормальное кислородное снабжение тканей.

– Также рекомендуем “Углекислый газ. Транспорт углекислого газа.”

Источник

Сатурация кислорода в крови – показатель, который берут во внимание терапевты, пульмонологи, кардиологи, гематологи и другие узкопрофильные врачи при постановке диагноза и выявлении осложнений различных заболеваний.

Полезно узнать, какие параметры исследования считаются патологией, от чего зависят и какие методы определения существуют.

Что это такое сатурация?

Сатурация кислорода в крови – что это? Под этим определением понимают параметр, который указывает на уровень насыщения О2 артериальной крови (гемоглобина) в процентном соотношении. Показатель в норме указывает на отсутствие патологических изменений в функционировании организма.

Что такое сатурация

В составе крови здорового человека, чтобы его организм в полной мере насыщал ткани важным кислородом, критерии сатурации должны быть в пределах 95-98%. У курильщиков или пациентов с хроническими болезнями дыхательной системы, показатель ниже, обычно от 92-95%, в виду имеющихся проблем он считается нормой.

Процентное соотношение насыщения О2 важно для контроля за состоянием пациентов, страдающих дыхательной, сердечной недостаточностью. Если у взрослых сатурация кислорода в крови в норме составляет не менее 95%, тот же показатель у новорожденных и детей постарше иной – 93-96%.

В период развития и роста малышей, уровень гемоглобина гораздо ниже, организм не может в достаточной мере захватывать газ из воздуха.

Как происходит процесс

Обогащение кислородом внутренних органов происходит через дыхательную систему. Человек вдыхает воздух, через капиллярную систему легких эритроциты (кровяные клетки транспортировки)  наполненные газом доставляют его к тканям организма.

Подробнее процесс сатурации выглядит так:

  1. Капилляры, окружающие альвеолы, забирают и транспортируют О2.
  2. Артериальная кровь идет по кругу кровообращения, забрав необходимый газ, переносит его ко всем тканям. 
  3. Уже венозная кровь, бедная кислородом, идет обратно к альвеолам.

Находящийся в эритроцитах гемоглобин при нормальном состоянии захватывает по 4 молекулы О2. Из среднего количества способных к захвату кровяных клеток складывается показатель сатурации. 100% – невозможный параметр, не каждая клетка способна захватить достаточное количество молекул газа.

Нарушение захвата не связано с качеством и количеством эритроцитов, а зависит от функции дыхательной системы.

Почему важна сатурация

Определение параметра

Для выявления уровня насыщенности крови кислородом диагносты используют 2 метода: инвазивный и неинвазивный. Точность в обоих случаях 100%, однако погрешность составляет 1%.

Инвазивный метод заключается в том, что специалисты делают забор артериальной крови через прокол. На 1 г гемоглобина приходится 1,34 мл O2:

  • Выявляют количество гемоглобина.
  • Высчитывают объем захватываемого газа.
  • Выявляют показатель в процентном соотношении.

После исследований, специалисты сверяются с таблицей нормы  сатурации кислорода в крови у взрослых. Если речь идет о малышах или развитии плода при беременности, в учет берут иные показатели.

ВзрослыеДетиЗдоровые плодыЛегкая степень гипоксииТяжелая степень гипоксии
95-9893-98443423,8

Пульсоксиметры: метод сатурации

Неинвазивный метод определения О2 в гемоглобине предпочтителен при плохой свертываемости крови, нарушенном кровообращении и в детском возрасте. В этом случае используют приборы – пульсоксиметры. Они безболезненно определяют показатель, бывают портативными и стационарными:

  1. Портативные удобны для людей, которым показан мониторинг насыщенности О2, они не могут проходить его в условиях больницы. 
  2. Стационарные используют в тяжелых ситуациях: реанимации, хирургических операциях.

Измерения бывают однократными или многократными за период. Многократные исследования проводят во время сна пациента, результаты с разной периодичностью фиксируются в памяти аппарата.

В зависимости от ситуации врач учитывает целесообразность того или иного метода.

Принцип действия

Принцип действия

Различаются пульсоксиметры по принципу действия. Трансмиссионный аппарат представляет собой браслет на запястье или коробочку, крепящуюся на поясе со специальными высокочувствительными пластинами. Действует пульсоксиметр так:

  1. Пластинки зажимают палец или ухо по принципу клипсы и начинают излучать лучи разной длины. Поглощение у разного состава артериальной  и венозной крови этих лучей отличается. 
  2. Отслеженные данные о преломлении, отражении и прохождении этих лучей передаются на основной прибор (браслет). 
  3. Аппарат анализирует полученную информацию и сигнализирует о результате. 

Отраженные пульсоксиметры регистрируют световые волны, которые не поглощаются насыщенным О2 гемоглобином, а отражаются от тканей внутренних органов. Такие приборы устанавливают на плечо, живот или лицо.

При нормальных показателях прибор издает кратковременные периодические звонки. Если сатурация понижена – аппарат начинает издавать тревожные многократные сигналы.

Чтобы диагностика была достоверной, пациенты должны придерживаться правил перед исследованием:

  1. Отказаться от курения, употребления спиртных, тонизирующих напитков (энергетики, кофе, крепкий чай).
  2. Отказаться от приема пищи за 2 часа до исследования.
  3. Не принимать успокоительные препараты, медикаменты, влияющие на функцию дыхательной и сердечной системы.
  4. Результативной диагностика будет только в случае неподвижного состояния пациента.

Кожный покров на части тела, на которую крепится аппарат, должна быть очищенной от косметических средств. Если пульсоксиметр устанавливают на палец, гель-лак должен быть удален с ногтя. Если пластинки крепятся на мочку уха – снимают сережки.

Чем вызвананизкая сатурация

Низкий уровень О2 указывает на хронические и острые патологии дыхательной системы. При большой кровопотери во время хирургического вмешательства или травматизации человека происходит уменьшение О2 в эритроцитах.

У людей, страдающих ожирением, наблюдается снижение газов в эритроцитах. Также врач может заподозрить:

  • гипертонию;
  • анемию;
  • венозные застои;
  • плохую микроциркуляцию;
  • гипофункцию щитовидной железы;
  • недостаточность кровообращения.

Низкая насыщенность гемоглобина газом указывает на голодание клеток. В этом случае обменные процессы замедляются. Ткани внутренних органов постепенно, но уверенно начинают отмирать. Некроз элементов приводит к нарушению функции органов.

 Низкая сатурация и чем вызвана

Виды лечения

Чтобы не допустить осложнений, медики оперативно применяют различные методики повышения уровня необходимого газа в эритроцитах. В первую очередь устраняют причину нарушения насыщения.

Мероприятия по нормализации О2 в крови:

  1. Оксигенация. В случае острой дыхательной недостаточности применяют искусственное насыщение эритроцитов в кровяном русле. Пациента помещают в барокамеру, кислород в которой находится под высоким давлением.
  2. Ингаляции, кислородные подушки.
  3. Аппараты ИВЛ (искусственной вентиляции легких).
  4. Медикаментозная терапия. Применяют средства для улучшения кровообращения, препараты для восстановления окислительно-восстановительных процессов, антикоагулянты.

Если наблюдается незначительная сатурация, врачи используют только медикаменты. Также результативными будут простые действия:

  • дыхательная гимнастика;
  • умеренные физические нагрузки;
  • массаж грудной клетки;
  • прогулки на свежем воздухе.

Длительность лечения, препараты и методики выбирает только врач. Самостоятельно принимать меры по восстановлению насыщения кровяных клеток О2 нельзя.

Сатурация кислорода в крови – важный показатель, который указывает на проблемы в организме. Вовремя выявленный параметр поможет уменьшить риск появления осложнений.

Пульмонолог, врач высшей категории, проводит регулярные приемы

Автор:
Панина Ирина
Пульмонолог, Аллерголог

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 июля 2013; проверки требуют 29 правок.

Эффект Вериго — Бора (синонимы — эффект Вериго, эффект Бора) — зависимость степени диссоциации оксигемоглобина от величины парциального давления углекислоты в альвеолярном воздухе и крови, при снижении которого сродство кислорода к гемоглобину повышается, что затрудняет переход кислорода из капилляров в ткани. Эффект этот был открыт независимо друг от друга Б. Ф. Вериго в 1892 году[1] и датским физиологом К. Бором в 1904 году[2].

История открытия[править | править код]

Основу разработки проблемы гипоксии заложил русский учёный-физиолог И. М. Сеченов фундаментальными работами по физиологии дыхания и газообменной функции крови. Большое значение имеют также исследования русского физиолога Б. Ф. Вериго по физиологии газообмена в лёгких и тканях. Опираясь на идеи Сеченова о сложных формах взаимодействия между диоксидом углерода и кислородом в крови (Вериго работал в лабораториях Сеченова, И. Р. Тарханова и И. И. Мечникова), он впервые установил зависимость степени диссоциации оксигемоглобина от величины парциального давления углекислоты в крови.

Биохимический механизм[править | править код]

Эффект Вериго — Бора: влияние pH на кривую насыщения гемоглобина кислородом

В клетках периферических тканей органическое топливо окисляется в митохондриях с использованием кислорода (клеточное дыхание), доставляемого гемоглобином из лёгких; при этом в качестве продуктов образуются углекислый газ, вода и другие соединения. Образование углекислого газа в тканях одновременно приводит и к повышению концентрации ионов H+ (то есть к понижению pH), поскольку при гидратации CO2 образуется H2CO3 — слабая угольная кислота, диссоциирующая на ионы H+ и бикарбонат-ионы:

H2CO3 ⇄ H+ + HCO3-.

Гемоглобин переносит значительную долю (около 20 %) общего количества CO2 и ионов H+, образующихся в тканях и поступающих в лёгкие и почки, обеспечивающих выделение этих продуктов.

За много лет до открытия этого механизма было обнаружено, что на связывание кислорода гемоглобином очень сильное влияние оказывает pH и концентрация CO2: при присоединении CO2 и ионов H+ способность гемоглобина связывать O2 снижается. Действительно, в периферических тканях с относительно низким значением pH и высокой концентрацией CO2 сродство гемоглобина к кислороду падает. И наоборот, в лёгочных капиллярах выделение CO2 и сопутствующее ему повышение pH крови приводит к увеличению сродства гемоглобина к кислороду. Это влияние величины pH и концентрации CO2 на связывание и освобождение O2 гемоглобином и называют эффектом Вериго — Бора.

Реакция связывания кислорода гемоглобином в виде

Hb + O2 ⇄ HbO2

в действительности отражает неполную картину, поскольку не учитывает дополнительные лиганды H+ и CO2.

Чтобы объяснить влияние концентрации ионов H+ на связывание кислорода, следует записать эту реакцию в иной форме:

HHb+ + O2 ⇄ HbO2 + H+,

где HHb+ — протонированная форма гемоглобина. Из этого уравнения следует, что кривая насыщения гемоглобина кислородом зависит от концентрации ионов H+. Гемоглобин связывает и O2, и ионы H+, но между этими двумя процессами существует обратная зависимость. Если парциальное давление кислорода велико (что наблюдается, например, в лёгких), то гемоглобин связывает его, освобождая при этом ионы H+. При низком парциальном давлении кислорода (что имеет место в тканях) связываться с гемоглобином будут ионы H+.

Эффективность связывания гемоглобином углекислого газа (с образованием карбаминогемоглобина, чаще именуемого карбгемоглобином[3]) находится в обратной зависимости от связывания кислорода. В тканях часть избыточного CO2 связывается с гемоглобином, сродство последнего к O2 снижается, и происходит высвобождение кислорода. В лёгких же связывается избыток O2 воздуха, тем самым сродство гемоглобина к CO2 уменьшается, и CO2 выделяется в альвеолярный воздух, способствуя лёгкому закислению крови за счёт ионов H+, возникающих при диссоциации угольной кислоты (см. выше).

Описанные зависимости делают молекулу гемоглобина великолепно приспособленной к осуществлению совместного переноса эритроцитами кислорода, углекислого газа и ионов H+[4].

См. также[править | править код]

  • Эффект Холдейна (открыт Джоном Скоттом Холдейном)

Примечания[править | править код]

  1. Verigo B. F. Zur Frage über die Wirkung des Sauerstoff auf die Kohlensäureausscheidung in den Lungen // Archiv für die gesammte Physiologie des Menschen und der Thiere : статья. — 1892. — № 51. — С. 321—361.
  2. Chr. Bohr, K. Hasselbalch, and August Krogh. Concerning a Biologically Important Relationship — The Influence of the Carbon Dioxide Content of Blood on its Oxygen Binding // Skand. Arch. Physiol. : статья. — 1904. — № 16. — С. 401—412.
  3. ↑ Карбгемоглобин // Биологический энциклопедический словарь (рус.).
  4. Ленинджер А. Основы биохимии: В 3-х томах. Том 1. — М.: Мир, 1985. — С. 208—210. — 367 с.

Литература[править | править код]

  • Вериго эффект // Большой медицинский словарь (рус.). — 2000.

Источник