Норма со2 в артериальной крови
Автор Руслан Хусаинов На чтение 4 мин. Опубликовано 13.06.2019 15:35
Обновлено 13.06.2019 11:19
Врачи могут проверить кровь человека на нормальный или ненормальный уровень углекислого газа, или CO2, чтобы диагностировать определенные медицинские состояния. Например, анализ на СО2 может помочь диагностировать заболевания почек и легких. Анализ крови на СО2 — это простой анализ крови, который измеряет количество газа СО2 в крови человека.
Почки и легкие поддерживают концентрацию СО2 в крови. Если уровень СО2 в крови превышает нормальный уровень, врач может назначить дополнительные анализы для проверки функции почек и легких, исследуя содержание других газов в крови.
Что такое анализ крови на CO2?
Анализ крови на CO2 помогает оценить количество углекислого газа в крови, который присутствует в форме CO2, бикарбоната (HCO3) и углекислоты (H2CO3). В рамках своих нормальных функций человеческий организм естественным образом производит определенные кислоты и щелочи, которые уравновешивают друг друга. Любое нарушение этого баланса может быть ранним признаком основного заболевания.
Как проводят анализ крови на СО2?
Углекислый газ является «кислотным» компонентом, поскольку соединяется с водой, образуя углекислоту. Это делает кровь кислой. Анализ крови на CO2 обнаруживает изменения в кислотном содержании крови. Медицинский работник может измерить уровень CO2 в крови человека с помощью простого анализа крови. Кровь можно взять из артерии (артериальная кровь) или из вены (венозная кровь).
Забор венозной крови обеспечивает измерение уровня бикарбоната. Забор артериальной крови измеряет давление частиц углекислого газа. Оба компонента являются показателями оксигенации крови. Процедура тестирования обычно занимает 2-5 минуты. Медсестра соберет кровь в пробирку для отправки на анализ.
Показания для проведения анализа крови на СО2
Анализ крови на CO2 проводят в рамках обычной проверки или для выяснения причины определенных симптомов. Его могут рекомендовать в случае неотложной медицинской помощи или непосредственно перед операцией. Люди, имеющие следующие симптомы, могут сдать анализ крови на CO2:
- тошнота или рвота;
- сбивчивое дыхание;
- затрудненное дыхание;
- слабость.
Нормальный уровень CO2 в крови
Результаты анализа на CO2 могут различаться в зависимости от возраста, пола и истории болезни человека, а также от метода проведения теста и от того, принимает ли человек какие-либо препараты.
Нормальные диапазоны общего содержания CO2 в крови должны быть следующими.
Возрастной диапазон | Условные единицы | СИ единицы |
18–59 | 23–29 мэкв / л | 23–29 ммоль / л |
60–89 | 23–31 мэкв / л | 23–31 ммоль / л |
90+ | 20–29 мэкв / л | 20–29 ммоль / л |
При каких состояниях изменятся уровень СО2 в крови?
Изменения уровня CO2 могут свидетельствовать о том, что человек теряет или сохраняет нормальные биологические жидкости. Это указывает на дисбаланс в электролитной системе организма. Уровень CO2 ниже нормы может указывать на следующие сстояния:
- болезнь Эддисона;
- диарея;
- отравление этиленгликолем, например, отравление антифризом;
- кетоацидоз, при котором организм вырабатывает слишком много кислот крови;
- болезнь почек;
- токсичность салицилатов, например, от передозировки аспирина;
- лактоацидоз или накопление лактата в организме.
Высокие уровни CO2 могут указывать на:
- нарушения дыхания;
- синдром Кушинга;
- гиперальдостеронизм, состояние, которое влияет на надпочечники;
- инфекции дыхательных путей.
Риск при сборе анализа крови на CO2
Как и в случае любого простого взятия крови, люди могут испытывать незначительные побочные эффекты от теста на СО2. Риски могут включать:
- головокружение или слабость;
- кровотечение на месте укола иглой;
- образование гематомы под поверхностью кожи.
Если эти симптомы сохраняются дольше суток, сообщите об этом врачу.
Заключение
CO2 — это природный газ в организме. Уровни CO2 могут увеличиваться или уменьшаться вследствие инфекций, приема препаратов или различных заболеваний. Проведение анализа крови на CO2 может пролить свет на любые основные медицинские состояния, которые врач сможет диагностировать и лечить.
Статья по теме: Нормальная частота дыхания.
Краткое название показателя:
SO2
Также:
Истинная (инвазивная) сатурация кислородом крови SaO2
Категория:
Кислотно-основное состояние и газы крови
Единица измерения:
%
Краткое описание
В условиях организма 1 г гемоглобина способен связать 1,34 мл кислорода. Если известно содержание гемоглобина крови, можно рассчитать кислородную емкость крови – максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении О2. При содержании 150 г/л количество кислорода в 1 л крови составит 1,34 х 150 = 201 мл; в 100 мл крови – 20,1 мл или 20,1 об. % (объемных %).
Процентное отношение количества О2, реально связанного с гемоглобином, к кислородной емкости крови называется насыщением (saturation – сатурация) гемоглобина кислородом (SO2 или НВО2). Другими словами, SO2 – это отношение оксигемоглобина к общему количеству гемоглобина крови.
В норме насыщение артериальной крови кислородом (SO2 или НВО2) составляет 96-98% . Небольшое “недонасыщение” (2-4%) объясняется некоторой неравномерностью легочной вентиляции и незначительной примесью венозной крови, которые имеют место и у здоровых людей.
Насыщение гемоглобина кислородом зависит от напряжения О2 в крови (в соответствии с физическим законом действующих масс). Графически эту зависимость отражает кривая диссоциации оксигемоглобина, имеющая S-образную форму.
Подробное описание
Показатель SO2 измеряется путём исследования артериальной крови. Аналогичный показатель, измеренный неинвазивным способом (с помощью пульсоксиметрии) обозначается как SpO2. в принципе оба показателя коррелируют хорошо, погрешность составляет 1-2%, и с развитием техники продолжает уменьшаться.
SO2 наряду с РaO2 (HbQ2) характеризует степень оксигенации крови. Снижение этих показателей в артериальной крови (венозная кровь для исследования газового состава непригодна) называется артериальной гипоксемией. Умеренная гипоксемия характеризуется прежде всего снижением РаО2, величина SO2 (HBO2) более устойчива.
Что бы правильно понять цифры сатурации можно их сравнить с парциальным давлением кислорода в крови (PaO2).
-Сатурация (SpO2) 95-98% соответствует – 80-100 мм рт. ст. (PaO2).
-Сатурация (SpO2) 90% соответствует – 60 мм рт.ст.(PaO2).
-Сатурация (SpO2) 75% соответствует – 40 мм рт.ст.(PaO2).
Референтные значения
Норма | |||||
кроме новорожденных и недоношенных | 96 | 98 | % |
Факторы повышения и понижения
Другие | |
Пребывание на больших высотах | Понижение |
Источники и литература
Другие сервисы медицинского портала MedElement
Медицинский портал MedElement – это облачные сервисы, мобильные
приложения и электронные справочники для врачей и пациентов.
Наши проекты могут помочь вам!
Краткое название показателя:
PaO2
Также:
Oxygen tension
Категория:
Кислотно-основное состояние и газы крови
Единица измерения:
мм.рт.ст
Краткое описание
РаО2 — напряжение кислорода в артериальной крови; измеряется в единицах давления (традиционно — в мм рт. ст. [torr]), а в последнее время — в килопаскалях [кПа}). РаО2 численно равно давлению, под которым произошло насыщение крови кислородом. Его можно определить и как давление кислорода, требующееся для того, чтобы удержать в артериальной крови растворенный кислород. Чем выше Ра02, тем больше кислорода содержится в крови и тем выше скорость движения кислорода из капиллярной крови в ткани. В норме (то есть когда здоровый человек дышит атмосферным воздухом) этот показатель составляет 92-98 мм рт. ст. РаО2 обычно измеряют в лабораторных условиях, в пробе артериальной крови или в мониторном режиме микроэлектродом, введенным в артерию. С возрастом газовый состав крови претерпевает некоторые изменения. Напряжение О2 в артериальной крови здоровых молодых людей в среднем составляет 95-100 мм рт. ст.; к 40 годам оно снижается примерно до 80 мм рт. ст., а к 70 годам – до 70 мм рт. ст. Эти изменения связаны с тем, что с возрастом увеличивается неравномерность функционирования различных участков легких.
Подробное описание
РаО2 наряду с двумя другими величинами (раСО2 и рН) составляют такое понятие как “газы крови” (Arterial blood gases – ABG(s)). Значение рaО2 зависит от многих параметров, главными из которых являются возраст и высота нахождения пациента (парциальное давление О2 в атмосферном воздухе). Таким образом, показатель рО2 должн быть интепретирован индивидуально для каждого пациента.
Точные результаты для ABGs зависит от сбора, обработки и собственно анализа образца. Клинически важные ошибки могут возникать на любом из этих этапов, но измерение газов крови являются особенно уязвимыми к ошибкам возникающим до проведения анализа. Наиболее распространенные проблемы включают в себя
– забор не артериальной (смешанной или венозной) крови;
– наличие воздушных пузырьков в пробе;
– недостаточное или чрезмерное количество антикоагулянта в образце;
– задержка проведения анализа и хранение образца всё это время неохлажденным.
Надлежащий образец крови для анализа ABG содержит, как правило,1-3 мл артериальной крови, взятой пункционно анаэробно из периферической артерии в специальный контейнер из пластика, с помощью иглы малого диаметра. Пузырьки воздуха, которые могут попасть во время отбора пробы, должны быть незамедлительно удалены. Воздух в помещении имеет раО2 около 150 мм рт.ст. (на уровне моря) и раСО2 практически равное нулю. Таким образом, воздушные пузырьки, которые смешиваются с артериальной кровью сдвигают (увеличивают) раО2 к 150 мм рт.ст. и уменьшают (снижают) раСО2.
Если в качестве антикоагулянта используется гепарин и забор производится шприцем а не специальным контейнером, следует учитывать рН гепарина, который равен приблизительно 7,0. Таким образом, избыток гепарина может изменить все три значения ABG (раО2, раСО2, рН). Очень малое количество гепарина необходимо, чтобы предотвратить свертывание; 0,05 – 0,10 мл разбавленного раствора гепарина (1000 ЕД / мл), будет противодействовать свертыванию приблизительно 1 мл крови, не влияя при этом на рН, раО2, раСО2. После промывки шприца гепарином, достаточное количество его обычно остается в мертвом пространстве шприца и иглы, чего хватает для антикоагуляции без искажения значений ABG.
После сбора, образец должен быть проанализирован в кратчайшие сроки. Если происходит задержка более 10 минут, образец должен быть погружен в контейнер со льдом. Лейкоциты и тромбоциты продолжают потреблять кислород в образце и после забора, и могут вызвать значительное падение раО2, при хранении в течение долгого времени при комнатной температуре, особенно в условиях лейкоцитоза или тромбоцитоза. Охлаждение позволит предотвратить любые клинически важные изменения, по крайней мере в течение 1 часа, за счёт снижения метаболической активности этих клеток.
Референтные значения
Норма | |||||
дети и молодые | 92 | 98 | мм.рт.ст | ||
зрелый | 80 | 98 | мм.рт.ст | ||
пожилые | 70 | 92 | мм.рт.ст |
Факторы повышения и понижения
Другие | |
Пребывание на больших высотах | Понижение |
Пожилой возраст | Понижение |
Старческий возраст | Понижение |
Загрязнение (контаминация) пробы | Повышение |
Длительное хранение пробы | Понижение |
Неправильное хранение и транспортировка пробы | Понижение |
Источники и литература
Другие сервисы медицинского портала MedElement
Медицинский портал MedElement – это облачные сервисы, мобильные
приложения и электронные справочники для врачей и пациентов.
Наши проекты могут помочь вам!
О чем говорят анализы
5. Газы крови
5.1. Кислород
5.2. Двуокись углерода (углекислый газ)
* * *
5.1. Кислород
Важнейшая функция крови — дыхательная. Поглощенный в легких кислород переносится кровью к органам и тканям, а углекислый газ транспортируется в обратном направлении. Основная (ключевая) роль в переносе дыхательных газов принадлежит гемоглобину, содержащемуся в эритроцитах крови.
Гемоглобин относится к классу сложных белков — хромопротеинов. Он состоит из небелковой части, относящейся к железопорфиринам, — гема и белковой части — глобина. Гемоглобин выполняет функцию переносчика кислорода благодаря наличию в молекуле гема двухвалентного железа. Железо гемоглобина, присоединяя молекулу кислорода, не окисляется, то есть не переходит из двух- в трехвалентное состояние, а образует обратимую связь, которая сравнительно легко разрушается при соответствующих изменениях концентрации кислорода в среде.
Гемоглобин (Нb), присоединивший кислород, становится оксигемоглобином (Нb0 2 )
• Реакцию связывания кислорода гемоглобином называют оксигенацией, обратный процесс — дезоксигенацией. Не связанный с кислородом гемоглобин носит название дезоксигемоглобина.
В условиях организма 1 г гемоглобина способен связать 1,34 мл кислорода. Если известно содержание гемоглобина крови, можно рассчитать кислородную емкость крови — максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении 02. При содержании 150 г/л количество кислорода в 1 л крови составит 1,34 х 150 = 201 мл; в 100 мл крови — 20,1 мл или 20,1 об. % (объемных %).
Процентное отношение количества О2, реально связанного с гемоглобином, к кислородной емкости крови называется насыщением (saturation — сатурация) гемоглобина кислородом (SO2 или НBО2). Другими словами, S0 2 — это отношение оксигемоглобина к общему количеству гемоглобина крови.
В норме насыщение артериальной крови кислородом (SO2 или НВО2) составляет 96-98% . Небольшое «недонасыщение» (2-4%) объясняется некоторой неравномерностью легочной вентиляции и незначительной примесью венозной крови, которые имеют место и у здоровых людей.
Насыщение гемоглобина кислородом зависит от напряжения О2 в крови (в соответствии с физическим законом действующих масс). Графически эту зависимость отражает кривая диссоциации оксигемоглобина, имеющая S-образную форму.
Напряжение кислорода в артериальной крови (Ра02) в норме колеблется в пределах 95-100 мм рт. ст. С возрастом газовый состав крови претерпевает некоторые изменения. Напряжение 02 в артериальной крови здоровых молодых людей в среднем составляет 95-100 мм рт. ст.; к 40 годам оно снижается примерно до 80 мм рт. ст., а к 70 годам — до 70 мм рт. ст. Эти изменения связаны с тем, что с возрастом увеличивается неравномерность функционирования различных участков легких.
Таким образом, степень оксигенации крови может быть охарактеризована двумя показателями: напряжением кислорода (РаО2) и насыщением крови кислородом (SO2 или НВО2).
Снижение этих показателей в артериальной крови (венозная кровь для исследования газового состава непригодна) называется артериальной гипоксемией. Умеренная гипоксемия характеризуется прежде всего снижением РаО2, величина S02 (НВО2) более устойчива.
5.2. Двуокись углерода (углекислый газ)
Двуокись углерода — конечный продукт обменно-окислительных процессов в клетках и тканях организма — переносится кровью к легким и удаляется через них во внешнюю среду (99,5% С02 покидает организм через легкие и только незначительная часть выделяется почками).
Двуокись углерода может переноситься как в физически растворенном виде, так и в составе обратимых химических соединений. Химические реакции связывания С02 сложнее и многообразнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт углекислого газа, должны обеспечивать и постоянство кислотно-основного состояния крови.
Двуокись углерода находится в крови в следующих формах:
• в растворенном виде в плазме — 5%;
• в связи с аминогруппами гемоглобина — 15%;
• в виде угольной кислоты (Н2СО3) — незначительное количество;
• в виде бикарбонатионов (НСО3), обеспечивающих постоянство активной реакции крови (рН), — более 80%.
В нормальных условиях в артериальной крови напряжение С02 (РаС02) составляет около 40 мм рт. ст. (с колебаниями от 35 до 45 мм рт. ст.). Повышение РаС02 называется артериальной гиперкапнией, снижение — артериальной гипокапнией.
Нарушения газового состава крови выявляются при большинстве заболеваний легких. По показателям газового состава артериальной крови можно судить о функции легких в целом.
Идеальным объектом изучения газового состава крови является артериальная кровь, полученная пункцией локтевой или бедренной артерии. Газовый состав венозной крови не может быть использован как показатель функции аппарата внешнего дыхания, так как содержание в ней 0 2 и С0 2 зависит еще и от уровня обмена веществ и скорости кровотока в тканях.
Забор крови и ее доставка к аппарату должны осуществляться без доступа воздуха (в шприце, закрытом капилляре, сосуде под вазелиновым маслом). Шприц и иглу для пункции необходимо промыть гепарином.
Необходимость получения крови из артерии исключает возможность повторных исследований на протяжении короткого периода времени, поэтому широкое распространение получило исследование малых порций капиллярной крови, полученных из кончика пальца или мочки уха.
Еще Холденом было показано, что если руку человека держать в течение 20 мин в водяной бане с температурой воды 38 °С, то в этих условиях газовый состав крови из подкожной вены руки станет идентичным газовому составу артериальной крови. Еще более близок к артериальной газовый состав капиллярной крови.
Используемая в настоящее время измерительная аппаратура предусматривает исследование минимальных порций крови (0,1 мл), которые можно получить из кончика разогретого пальца или мочки уха, предварительно добившись того, чтобы кровоток в ней был максимален (растирание).
Для определения газового состава крови могут быть использованы различные методы.
В настоящее время наиболее доступным и широко распространенным способом изучения оксигенации крови являются оксиметрические методы. Они основаны на различии оптических свойств (спектров поглощения) гемоглобина и оксигемоглобина.
Алый цвет артериальной крови обусловлен тем, что оксигемоглобин достаточно интенсивно поглощает коротковолновые лучи, соответствующие синей части спектра, но пропускает большую часть длинноволновых («красных») лучей. Дезоксигемоглобин более интенсивно поглощает длинноволновые лучи и менее интенсивно — коротковолновые. В связи с этим венозная кровь выглядит темнее и имеет красный цвет с синеватым оттенком.
Для определения насыщения крови кислородом (SO 2 или Нb0 2 ) используются спектрофотометры — приборы, в которых видимый свет при помощи призмы или дифракционной решетки разлагается в спектр. Затем из спектра выделяется узкая полоса лучей с определенной длиной волны (монохроматический свет) и пропускается через исследуемый раствор (порцию крови).
Поглощение света зависит от оптических свойств крови. Для определения соотношения между интенсивностью падающего и прошедшего через раствор света используется фотоэлемент.
Напряжение кислорода и углекислого газа крови можно измерить с помощью специальных электродов.
Для определения напряжения кислорода применяют полярографический метод. Он предусматривает использование двух электродов: измеряющего, изготовленного из благородных (не окисляющихся) металлов (платины или золота), и референтного. Электроды отделены от крови мембраной, проницаемой для газов, и включены в замкнутую цепь, где создается небольшое напряжение.
Молекулы кислорода, диффундирующие через мембрану, восстанавливаются на поверхности измеряющего электрода. В результате возникает электрический ток, величина которого пропорциональна напряжению 0 2 в крови.
Электрод для определения напряжения углекислого газа представляет собой рН-метр, в котором измеряющий и референтный электроды окружены раствором бикарбонатного буфера и отделены от крови тонкой мембраной, проницаемой для газов и непроницаемой для ионов НСО 3 -. Углекислый газ диффундирует из крови через мембрану, вследствие чего меняется рН бикарбонатного буфера. Чем выше напряжение углекислого газа крови, тем большее количество молекул СО 2 проникает через мембрану. Изменения рН электролитного раствора регистрируются амперметром.