Норма тирозина в крови
Количественное исследование для выявления функциональных метаболических изменений (48 показателей).
Протеиногенные аминокислоты
Незаменимые глюкогенные
Аргинин (Arg)
Валин (Val)
Гистидин (His)
Метионин (Met)
Треонин (Thr)
Незаменимые кетогенные
Лейцин (Leu)
Лизин (Lys)
Незаменимые глюко-/кетогенные
Изолейцин (Ile)
Триптофан (Trp)
Фенилаланин (Phe)
Заменимые глюкогенные
Аланин (Ala)
Аспарагин (Asn)
Аспарагиновая кислота (Asp)
Глицин (Gly)
Глутамин (Gln)
Глутаминовая кислота (Glu)
Пролин (Pro)
Серин (Ser)
Таурин (Tau)
Заменимые глюко-/кетогенные
Тирозин (Tyr)
Непротеиногенные аминокислоты
Метаболиты цикла образования мочевины
Аргинин-янтарная кислота, аргининосукцинат (Ars)
Гомоцитруллин (Hci)
Орнитин (Orn)
Протеиногенные аминокислоты
Незаменимые глюкогенные
Аргинин (Arg)
Валин (Val)
Гистидин (His)
Метионин (Met)
Треонин (Thr)
Незаменимые кетогенные
Лейцин (Leu)
Лизин (Lys)
Незаменимые глюко-/кетогенные
Изолейцин (Ile)
Триптофан (Trp)
Фенилаланин (Phe)
Заменимые глюкогенные
Аланин (Ala)
Аспарагин (Asn)
Аспарагиновая кислота (Asp)
Глицин (Gly)
Глутамин (Gln)
Глутаминовая кислота (Glu)
Пролин (Pro)
Серин (Ser)
Таурин (Tau)
Заменимые глюко-/кетогенные
Тирозин (Tyr)
Непротеиногенные аминокислоты
Метаболиты цикла образования мочевины
Аргинин-янтарная кислота, аргининосукцинат (Ars)
Гомоцитруллин (Hci)
Орнитин (Orn)
Ацетилтирозин (Aty)
Метод исследования
Высокоэффективная жидкостная хроматография с тандемным масс-спектрометрическим детектированием (ВЭЖХМС/МС).
Единицы измерения
Мкмоль/л (микромоль на литр).
Какой биоматериал можно использовать для исследования?
Венозную кровь.
Как правильно подготовиться к исследованию?
- Исключить из рациона алкоголь в течение 24 часов до исследования.
- Детям в возрасте от 1 до 5 лет не принимать пищу в течение 2-3 часов до исследования.
- Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
- Полностью исключить (по согласованию с врачом) прием лекарственных препаратов в течение 24 часов перед исследованием.
- Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
- Не курить в течение 30 минут до исследования.
Общая информация об исследовании
Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются “протеиногенными” (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.
Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.
Актуальность рассмотрения нарушений обмена аминокислот определяется тем, что эта патология отражается в первую очередь на функции нервной системы и является одной из основных причин слабоумия. Знание таких патологий необходимо в практике неонатологов и генетиков для профилактики и коррекции олигофрении.
По возможности синтезироваться аминокислоты в организме делятся заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, изолейцин, лейцин, метионин, фенилаланин, к заменимым аминокислотам – аланин, глицин, тирозин. При дефекте ферментов на разных этапах трансформации аминокислоты и продукты их превращения могут накапливаться и оказывать отрицательное воздействие на организм.
Различают первичные (врождённые) и вторичные (приобретенные) нарушения метаболизма аминокислот. Врождённые заболевания обусловлены дефицитом ферментов и/или транспортных белков, которые связанны с метаболизмом аминокислот. Приобретенные нарушения аминокислот связаны с заболеваниями печени, ЖКТ, почек, недостаточным или неадекватным питанием, новообразованиями.
В норме наибольшая скорость обмена аминокислот характерна для нервной ткани. Поэтому разнообразные наследственные нарушения обмена являются одной из причин изменения функционирования в первую очередь ЦНС.
К числу наиболее серьезных и достаточно распространенных нарушений обмена относятся аномалии метаболизма фенилаланина и тирозина. Причина фенилкетонурии – врождённый дефицит печеночной фенилаланин–4–гидроксилазы. Это приводит к нарушению концентрации в крови, возникает дефицит тирозиновых и триптофановых производных (меланина, катехоламинов, серотонина). При этом в крови и моче значительно увеличиваются концентрации фенилацетилглутамина, фенилпирувата, фенилацетата. В крови повышается концентрация веществ, которые практически полностью отсутствуют в норме (фенилэтиламин, фенилпируват, фениллактат). Это нейротоксические соединения, они нарушают метаболизм липидов в мозге. В сочетании с дефицитом нейромедиаторов (серотонина) этот механизм считается ответственным за прогрессирующее снижение интеллекта у больных и развитие фенилпировиноградной олигофрении.
Лейциноз (“болезнь кленового сиропа”) – заболевание обусловлено дефицитом дегидрогеназы разветвленных кетокислот, которая катализирует реакцию окислительного декарбоксилирования. В результате нарушается окисление оксикислот с разветвленной цепью – ОКРЦ, которые образуются при катаболизме аминокислот с разветвленной цепью (лейцин, изолейцин, валин). У больных моча имеет специфический запах кленового сиропа. При данном заболевании особенно патогенно накопление лейцина. Это истинно кетогенная аминокислота. Кетоновые тела играют большую роль в энергообеспечении мозга, особенно при гипогликемии. Нарушение обмена лейцина приводит к развитию умственной отсталости, судорогам, мышечной ригидности, летаргии, рвоте. Отмечаются гипогликемия и кетоацидоз. Основным методом лечения является специальная диета.
Тирозинозы – болезни нарушения обмена тирозина – имеют несколько генокопий и носят аутосомно-рецессивный и аутосомно-доминантный типы наследования, сцепленные с полом. Заболеваемость – 1/20000 населения. Наиболее распространенной формой заболевания признается альбинизм. Наиболее частый механизм заболевания – дефект медьсодержащего фермента меланобластов тирозиназы, блокирующего превращение тирозина в диоксифенилаланин, из которого образуется эпинефрин и меланин. У альбиносов белые кожа и волосы, розово-красные глаза, фотодерматит. Больные страдают фотобоязнью и плохо видят днем вследствие депигментации сетчатки. Нарушение тирозинового обмена приводит к повреждению печени и развитию цирроза.
Поскольку тирозинозы имеют много генокопий и в патогенезе прослеживаются дефекты разных ферментов метаболизма тирозина, то клинически выделяют и другие формы. Среди них наиболее известны тирозиноз Медеса, гипертирозинемия I и II типов, хоукинсурия. При них тирозинемия с тирозинурией часто сочетаются с печеночной и почечной недостаточностью. Хоукинсурия имеет аутосомно-доминантный тип наследования и характеризуется выраженным слабоумием. Ферментативные дефекты метаболизма тирозина могут сопровождаться нарушением продукции тиреоидных гормонов на основе аминокислоты тирозина. Например, дефект йодтирозиндейодиназы – один из механизмов наследственного гипотиреоза с кретинизмом.
Кроме патологических процессов и заболеваний, связанных с обменом аминокислот, следует отметить, что данные вещества широко применяются в спортивном питании. Также в настоящее время популярны системы вегетарианского питания, исключающие поступления в организм белков животного происхождения, а значит, и некоторых незаменимых аминокислот. Комплексное исследование аминокислотного профиля может быть полезно и для данных категорий в целях оценки влияния режима питания на обменные процессы в организме.
Исследование помогает определить уровень аминокислот в крови, их производных, оценить состояние аминокислотного обмена, диагностировать или подтвердить (при наличии характерных симптомов) нарушения обмена аминокислот.
Когда назначается исследование?
- Оценка метаболизма незаменимых и заменимых аминокислот.
- Выявление функционального дисбаланса в обмене витаминов.
- Корректировка диеты.
- Нормализация обмена веществ при системных нозологических состояниях у детей старше 1 года и у взрослых на фоне нарушений реабсорбции аминокислот в почечных канальцах.
Что означают результаты?
Референсные значения, мкмоль/л
Аминокислота | Возраст | ||
2 – 18 лет | > 18 лет | ||
1-Метилгистидин | 1,5 – 6 | 2,3 – 7 | |
Альфа-аминомасляная к-та | 7 – 28 | 10,2 – 40,1 | 11,8 – 45,9 |
Аланин | 139 – 474 | 173,9 – 523,7 | 188,3 – 624,2 |
Алло-изолейцин | |||
Аспарагин | 25 – 91 | 25,1 – 67,9 | 27,9 – 67,6 |
Глутамин | 316 – 1020 | 311,6 – 732,2 | 314,6 – 746 |
Гистидин | 10 – 116 | 52,8 – 88,5 | 46 – 95 |
Фосфосерин | 0 – 109 | 0 – 2,5 | |
Таурин | 37 – 177 | 30,2 – 194,3 | 35,9 – 227,9 |
Бета-аминомасляная к-та | |||
Аргинин | 29 – 134 | 21,4 – 113,1 | 5 – 111,3 |
Аспарагиновая к-та | 2 – 20 | 0 – 14,7 | |
Цистатионин | 0 – 2 | ||
Этаноламин | 1 – 14 | 1 – 15,3 | |
Глицин | 111 – 426 | 121,1 – 397,8 | 98,7 – 383,9 |
Изолейцин | 31 – 105 | 33,7 – 120,8 | 36,7 – 94,7 |
Лизин | 49 – 204 | 103,5 – 262,6 | 116,2 – 271,6 |
Саркозин | 1,4 – 19,4 | 2,4 – 12,9 | |
Валин | 83-300 | 152,1 – 443,0 | 129,6 – 316,4 |
Ацетилтирозин* (актуально, если исп-ся парентеральное питание, обогащенное ацетилтирозином) | 0-115 | ||
Бета-аланин | 0-28 | 0,5 – 6,8 | 0,5 – 6,9 |
Цитруллин | 9-38 | 21,4 – 48,8 | 17,5 – 41,1 |
Цистин | 2-32 | 7,4 – 46 | |
Гомоцистеин* | |||
Гидроксилизин | |||
Лейцин | 48 – 175 | 70 – 163,2 | 75,7 – 157 |
Серин | 69 – 271 | 79,5 – 179,8 | 64 – 170,5 |
Треонин | 47 – 237 | 67,2 – 211,1 | 60,5 – 273-5 |
Тирозин | 26 – 1115 | 32,2 – 104,5 | 26,3 – 84,8 |
4-Гидроксипролин | 8 – 61 | 10,4 – 37,7 | 4,9 – 21,9 |
Карнозин | |||
Цистеинсульфат | – | ||
Гамма-аминомасляная к-та | |||
Гомоцитруллин | |||
Метионин | 11 – 35 | 13,8 – 32,6 | 12,9 – 32,9 |
Фенилаланин | 28 – 80 | 33,9 – 82,8 | 29,5 – 92 |
Фосфоэтаноламин | |||
Пипеколиновая к-та | – | 0,3 – 3,1 | 0,3 – 3,2 |
Сахаропин | – | ||
3-Метилгистидин | |||
Аденозилгомоцистеин | |||
Альфа-аминоадипиновая к-та | |||
Ансерин | |||
Аргининосукциновая к-та | |||
Глутаминовая к-та | 31 – 202 | 13,5 – 99 | 14,5 – 159,7 |
Орнитин | 20 – 130 | 26,3 – 121,5 | 30,4 – 184,3 |
Пролин | 85 – 303 | 90 – 267 | 90 – 226,7 |
Триптофан | 17 – 75 | 31 – 87,7 | 31,8 – 69 |
Повышение общего количества аминокислот наблюдается:
- при эклампсии, нарушении толерантности к фруктозе, диабетическом кетоацидозе, почечной недостаточности, синдроме Рейе.
Снижение общего количества аминокислот наблюдается:
- при голодании, гиперфункции коры надпочечников, длительной лихорадке, хорее Гентингтона, синдроме мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта, гиповитаминозе, нефротическом синдроме, ревматоидном артрите.
Скрининг позволяет исключить многие аминоацидопатии (по той или иной аминокислоте).
Кто назначает исследование?
Акушер-гинеколог, эндокринолог, репродуктолог, андролог, ревматолог, онколог, терапевт, специалист антивозрастной медицины, геронтолог, психиатр, хирург, кардиолог, нефролог, диетолог.
Тирозин — это аминокислота, которая представляет собой строительные блоки белков. Организм вырабатывает тирозин из другой аминокислоты под названием фенилаланин.
- Функции тирозина в организме
- Виды нарушений обмена тирозина
- Причины нарушений обмена тирозина
- Симптомы нарушений обмена тирозина
- Лечение нарушений обмена тирозина
Тирозин содержится в молочных продуктах, мясе, рыбе, яйцах, орехах, бобах, овсе и пшенице.
Тирозин входит в состав белковых добавок для лечения наследственного заболевания фенилкетонурии. Люди с данным заболеванием не могут правильно обработать фенилаланин, а значит, их организм не может синтезировать тирозин. Для того чтобы удовлетворить потребности организма в этой аминокислоте, человеку необходимо принимать пищевые добавки.
Функции тирозина в организме
Организм использует тирозин, чтобы создать химические соединения, обеспечивающие функции мозга, связанные с вниманием и психической активностью. Лучше всего усваивается эта аминокислота при приеме внутрь, чуть хуже — при нанесении на кожу. Безопасная дозировка тирозина составляет 150 мг/кг массы тела в течение 3-х месяцев.
После приема тирозина возможны такие побочные эффекты, как тошнота, головная боль, усталость, изжога и боли в суставах.
Тирозин не рекомендуется принимать при беременности, кормлении грудью, гиперактивности щитовидной железы (гипертиреозе) или болезни Грейвса. При последних двух заболеваниях прием тирозина повышает уровень тироксина, это усугубляет гипертиреоз и болезнь Грейвса.
Тирозин необходим организму для профилактики:
- депрессии;
- синдрома дефицита внимания, гиперактивности;
- нарколепсии;
- расстройств сна.
Он также применяется для снятия стресса, лечения предменструального синдрома (ПМС), болезни Паркинсона, болезни Альцгеймера, синдрома хронической усталости, алкогольной и наркотической зависимости, лечения болезней сердца и инсульта, эректильной дисфункции, профилактики потери интереса к сексу, шизофрении. Кроме того, тирозин используют в качестве агента для получения ровного загара и подавления аппетита.
Виды нарушений обмена тирозина
Метаболизм тирозина — это процесс образования и усвоения тирозина в ходе пяти ферментативных реакций. В организме человека только гепатоциты и почечные канальцы содержат необходимые клетки, которые могут принимать участие в метаболизме тирозина и выделяют все необходимые для этого процесса ферменты. Основных нарушений обмена тирозина четыре: наследственная тирозинемия первого, второго и третьего типа, а также алкаптонурия. Кроме того, в некоторых случаях развивается такое состояние, как гипертирозинемия, не относящееся к нарушениям обмена тирозина и поддающееся коррекции при помощи лечения.
Гипертирозинемия — это повышение концентрации тирозина в крови. Нормальное значение для плазмы крови составляет от 30 до 120 мкмоль/л. Значения > 200 мкмоль/л считаются повышенными. Тем не менее, клинические проявления гипертирозинемии, как правило, не становятся очевидными, пока уровни этой аминокислоты в плазме не превысят 500 мкмоль/л.
Гипертирозинемия определяется путем количественного измерения уровня аминокислот в плазме. Этот тест обычно проводится для оценки необъяснимых болезней печени или неврологических нарушений, таких как судороги или задержка развития у детей. Гипертирозинемия также может быть обнаружена при синдроме Фанкони.
Наиболее важным диагностическим фактором при оценке гипертирозинемии является наличие или отсутствие заболеваний печени. Если заболевание печени присутствует, дополнительные тесты должны проводиться в срочном порядке: они могут обнаружить наследственную тирозинемию 1 типа – заболевание, которое требует немедленного лечения.
1. Наследственная тирозинемия 1 типа
Наследственная тирозинемия 1 типа (НТ1) также известна как гепаторенальная тирозинемия. Это заболевание является наиболее тяжелым расстройством метаболизма тирозина, его частота составляет один случай на 100 тысяч человек.
Наследственная тирозинемия первого типа характеризуется окислительным повреждением клеток при взаимодействии глутатиона и сульфгидрильных групп белков. Свободные аминокислоты окисляются, это приводит к гибели клеток или глубокой экспрессии генов, особенно в печени. В результате многие процессы обмена веществ, в том числе глюконеогенез, детоксикация аммиака и синтез секретируемых белков, нарушаются.
Сам тирозин не является токсичным для печени или почек, но вызывает дерматологические, офтальмологические и психомоторные нарушения при избытке в организме.
Наследственная тирозинемия наследуется по аутосомно-рецессивному признаку. Характерна распространенность среди определенных этнических групп, в том числе в канадской провинции Квебек. Мутации, вызывающие НТ1, также встречаются у коренных жителей Финляндии.
2. Наследственная тирозинемия 2 типа
Наследственная тирозинемия 2 типа также известна как глазокожная тирозинемия или синдром Рихнера-Ханхарта. Для этого заболевания характерны глазные и кожные патологии. Тип наследования: аутосомно-рецессивный.
3. Наследственная тирозинемия 3 типа
Наследственная тирозинемия 3 типа — редкое аутосомно-рецессивное заболевание, вызванное дефицитом 4-гидроксифенилпируват диоксигеназы (HPD), второго фермента на пути катаболизма тирозина. Большинство пациентов с таким диагнозом имеют неврологические дисфункции, в том числе атаксию, судороги и легкую психомоторную заторможенность.
4. Алкаптонурия
Алкаптонурия — это аутосомно-рецессивное расстройство, развивающееся вследствие недостаточной активности диоксигеназы гомогентизиновой кислоты (HGD, HGO), третьего фермента катаболизма тирозина. Ген, кодирующий заболевание, располагается на хромосоме 3q21-q23. Заболевание является врожденным и приводит не только к неполному расщеплению гомогентизиновой кислоты, но и плохому её выведению с мочой. Вследствие таких процессов метаболит откладывается в мышцах, хрящах, суставах и сухожилиях.
Алкаптонурию обычно подозревают у пациентов, цвет мочи которых спустя некоторое время после взятия образца меняет свой цвет с ярко-желтого на темно-коричневый после подщелачивания. Первые десятилетия жизни болезнь протекает бессимптомно, однако на третьем десятилетии могут проявиться такие внешние признаки алкаптонурии, как появление коричневатого или голубоватого пигмента в хряще уха и склерах. Уровни тирозина при этом могут быть в норме.
Причины нарушений обмена тирозина
Обмен тирозина происходит несколькими путями. Эта аминокислота является отправным продуктом для формирования красящего вещества волос и кожи — пигмента меланина. Когда превращение тирозина в меланин понижено из-за наследственной недостаточности тирозиназы, развивается альбинизм. Кроме того, тирозин является предшественником тироксина. При неполноценном синтезе этого фермента неправильно формируются гормоны щитовидной железы.
Причины гипертирозинемии:
Гипертирозинемия вызывается различными генетическими и приобретенными нарушениями. Основные причины это:
- наследственные дефициты ферментов;
- переходная тирозинемия новорожденного;
- болезни печени;
- цинга;
- гипертиреоз.
Причины приобретенной тирозинемии
Основной причиной этого заболевания является незрелость фермента, который участвует в ранней стадии преобразования тирозина. Мутирующий ген встречается примерно у 10% недоношенных детей и у совсем малого количества доношенных детей.
Причины тирозинемии 1, 2 и 3 типа
Основная причина тирозинемии 1 типа – это дефицит фумарилацетоацетат гидролазы, последнего участника катаболизма тирозина.
Причина тирозинемии 2 типа — дефицит тирозин-аминотрансферазы (TAT), первого фермента в пути катаболизма тирозина. При данном заболевании в плазме повышено количество тирозина и его метаболитов. Именно такой избыток тирозина приводит к клиническим проявлениям заболевания. Ген, кодирующий ТАТ, содержится на хромосоме 16q22. Мутации в этом гене ответственны за тирозинемию второго типа.
Причина тирозинемии 3 типа — мутации гена HPD на хромосоме 12q24.
Причины алкаптонурии
Алкаптонурия является энзимопатией, которая наследуется по аутосомно-рецессивному типу. То есть, оба родителя должны передать ребенку мутантные гены. При данном заболевании нарушение происходит в гене оксидазы гомогентизиновой кислоты (HGD). Располагается этот ген на хромосоме 3q 21-23. Таким образом, нарушается процесс выработки гомогентизиназы, являющейся важным участником процесса расщепления аминокислот тирозина и фенилаланина.
Симптомы нарушений обмена тирозина
Симптомы наследственной тирозинемии 1 типа
Основными симптомами наследственной тирозинемии 1 типа являются:
- тяжелые прогрессирующие заболевания печени;
- дисфункция почечных канальцев;
- синдром Фанкони;
- ацидоз;
- аминоацидурия;
- гипофосфатемия (в связи с фосфатной гипотрофией);
- проявления рахита;
- гепатомегалия;
- конъюгированная гипербилирубинемия;
- повышение в сыворотке крови альфа-фетопротеина;
Прогрессирование заболеваний печени может быть хроническим или острым, с быстрым ухудшением состояния и ранней смертью. Дисфункция печени обычно приводит к гипогликемии и аномалиям коагуляции. Уровни сыворотки аминотрансферазы обычно лишь слегка повышены и часто несоразмерны заметной степени коагулопатии. Нередко развиваются осложнения печеночной недостаточности, в том числе желтуха, асцит и кровоизлияния в различные части тела и мышцы.
Хроническая форма заболевания характеризуется такими симптомами:
- цирроз печени;
- гепатоцеллюлярная карцинома.
И острая, и хроническая формы заболевания могут возникать у братьев и сестер с одинаковыми генотипами. Внутрисемейная изменчивость тяжести заболевания может быть частично вызвана соматическим мозаицизмом.
Другие симптомы это:
- неврологические нарушения;
- острые эпизоды периферической невропатии;
- рвота;
- кишечная непроходимость;
- мышечная слабость;
- паралич;
- кардиомиопатия;
- межжелудочковая гипертрофия.
При отсутствии лечения продолжительность жизни пациентов значительно сокращается. Смерть может наступить от острой печеночной недостаточности уже спустя год после рождения или от хронической печеночной недостаточности или гепатоцеллюлярной карциномы в конце второго десятилетия жизни.
Симптомы наследственной тирозинемии 2 типа
Основные симптомы наследственной тирозинемии 2 типа (НТ2) это:
- поражения роговицы (язвы и прочее);
- светобоязнь;
- боль при моргании;
- слезотечение;
- покраснение;
- гиперкератозные бляшки на ладонях и стопах;
- эритематозные папулезные поражения.
Около 50 % пациентов с HT2 имеют интеллектуальную инвалидность (умственную отсталость).
Симптомы наследственной тирозинемии 3 типа
Основные симптомы наследственной тирозинемии 3 типа (НТ3) это:
- задержка умственного развития;
- повышение тирозина в плазме крови.
Гепатоцеллюлярная дисфункция любой этиологии приводит к повышению уровня тирозина в плазме крови и экскреции повышенного количества метаболитов тирозина в моче.
Симптомы алкаптонурии
Ранние признаки алкаптонурии у детей – это темные разводы от мочи, остающиеся на ткани, которые невозможно отстирать. Из-за содержащейся в моче гомогентизиновой кислоты вся моча через некоторое время после сбора окрашивается в темно-бурый цвет.
Далее развиваются такие симптомы:
- пиелонефрит;
- мочекаменная болезнь;
- калькулезный простатит;
- серо-коричневая пигментация на ушах, лице, глазах, ладонях, животе и других участках тела;
- ушные раковины уплотняются и окрашиваются в серо-голубой цвет;
- пигментируется конъюнктива и склера.
Гомогентизиновая кислота откладывается в гортани, вследствие чего у пациента наблюдается охриплость голоса, возникает боль при глотании, дисфагия, одышка.
Поздние симптомы алкаптонурии это:
- кальцификация аорты;
- пороки сердца;
- отложение пигмента в щитовидке и других органах — яичках, селезенке, надпочечниках.
Также развивается охроноз — пигментация всего тела. Пигмент откладывается в крупных суставах и позвоночнике, особенно в пояснично-крестцовой области. Происходит обызвествление нескольких межпозвонковых дисков, развивается охронотический артрит, анкилоз, ревматоидный артрит или остеоартрит. Подмышечные и паховые области становятся коричневыми.
Приобретенная тирозинемия — это наиболее распространенная причина повышенного уровня тирозина в плазме. Заболевание приобретается в раннем возрасте, а не наследуется, вот почему ему присвоено такое название. Переходная тирозинемия новорожденного является редко встречающейся, но актуальной проблемой современной неонатологии. У больных детей появляется вялость, плохой аппетит, метаболический ацидоз и длительная желтуха. Симптомы заболевания быстро исчезают при употреблении аскорбиновой кислоты, кофактора HPD и введении в рацион ребенка специальных смесей (без белка).
Лечение нарушений обмена тирозина
Лечение наследственной тирозинемии 1 типа
Лечение заключается в употреблении продуктов с малым количеством фенилаланина или полным отсутствием таких продуктов в рационе. Ограничение количества любых натуральных белков в конечном итоге снижает уровень тирозина в крови. Однако одним питанием невозможно предотвратить прогрессирование печеночной или почечной недостаточности, а также уменьшить риск развития гепатоцеллюлярной карциномы или неврологических нарушений.
Нитизинон или Орфадин — средства первой линии лечения, ингибирующие фенилпируват диоксигеназу. Такое лечение уменьшает метаболический путь токсичных соединений. Лечение, начатое в раннем возрасте, снижает риск раннего развития гепатоцеллюлярной карциномы. Типичная начальная доза Нитизинона составляет 1 мг/кг в день. Эту норму разделяют на утреннюю и вечернюю порцию.
Если биохимические параметры не нормализовались в течение одного месяца после начала терапии, доза должна быть увеличена до 1,5 мг/кг в день. Дозировку корректируют таким образом, чтобы полностью подавить выделение тирозина.
Метаболический мониторинг осуществляется ежемесячно в течение первого года, затем каждые три месяца на протяжении взросления. Рекомендовано офтальмологическое обследование и ежегодная печеночная томография.
Лечение наследственной тирозинемии 2 типа
Лечение заключается в соблюдении диеты с низким содержанием тирозина и фенилаланина. Уровни тирозина в плазме крови должны быть ниже 500 мкмоль/л. Раннее начало лечения предотвращает когнитивные нарушения, повреждение кожи и глаз.
Лечение наследственной тирозинемии 3 типа
Лечение подразумевает соблюдение диеты с употреблением продуктов с низким содержанием тирозина и фенилаланина. Однако достоверных данных о том, что такая диета может предотвратить или обратить вспять неврологические симптомы, пока нет.
Лечение алкаптонурии
Этиопатогенетическая терапия для алкаптонурии до настоящего времени не разработана. Для предотвращения избыточного образования гомогентизиновой кислоты некоторые специалисты рекомендуют соблюдать низкобелковую диету. С целью улучшения метаболизма тирозина при алкаптонурии рекомендуется ежедневно принимать витамин С (3000 мг и более в день).
Источники статьи:
https://cursoenarm.net/
https://www.merckmanuals.com/
https://www.uptodate.com/
https://rarediseases.org/
https://www.webmd.com/
По материалам:
https://cursoenarm.net
© 2016 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co.,
Inc., Kenilworth, NJ, USA
© 2016 UpToDate, Inc.
©2016 NORD – National Organization for Rare Disorders, Inc.
©2005-2016 WebMD, LLC.
Смотрите также:
У нас также читают: