Переход гемоглобина в оксигемоглобин

Переход гемоглобина в оксигемоглобин thumbnail

Оглавление темы “Вентиляция легких. Перфузия легких кровью.”:

1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.

2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.

3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.

4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.

5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.

6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

8. Углекислый газ. Транспорт углекислого газа.

9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..

10. Регуляция дыхания. Регуляция вентиляции легких.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Молекула гемоглобина может находиться в двух формах — напряженной и расслабленной. Расслабленная форма гемоглобина имеет свойство насыщаться кислородом в 70 раз быстрее, чем напряженная. Изменение фракций напряженной и расслабленной формы в общем количестве гемоглобина в крови обусловливает S-образный вид кривой диссоциации оксигемоглобина, а следовательно, так называемое сродство гемоглобина к кислороду. Если вероятность перехода от напряженной формы гемоглобина к расслабленной больше, то возрастает сродство гемоглобина к кислороду, и наоборот. Вероятность образования указанных фракций гемоглобина изменяется в большую или меньшую сторону под влиянием нескольких факторов.

Основной фактор — это связывание кислорода с геминовой фуппой молекулы гемоглобина. При этом чем больше геминовых фупп гемоглобина связывают кислород в эритроцитах, тем более легким становится переход молекулы гемоглобина к расслабленной форме и тем выше их сродство к кислороду. Поэтому при низком Р02, что имеет место в метаболически активных тканях, сродство гемоглобина к кислороду ниже, а при высоком Р02 — выше. Как только гемоглобин захватывает кислород, повышается его сродство к кислороду и молекула гемоглобина становится насыщенной при связывании с четырьмя молекулами кислорода.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Когда эритроциты, содержащие гемоглобин, достигают тканей, то кислород из эритроцитов диффундирует в клетки. В мышцах он поступает в своеобразного депо кислорода — в молекулы миоглобина, из которого кислород используется в биологическом окислении мышц.

Диффузия кислорода из гемоглобина эритроцитов в ткани обусловлена низким Р02 в тканях — 35 мм рт. ст. Внутри клеток тканей напряжение кислорода, необходимое для поддержания нормального метаболизма, составляет еще меньшую величину — не более 1 кПа. Поэтому кислород путем диффузии из капилляров достигает метаболически активных клеток. Некоторые ткани приспособлены к низкому содержанию Р02 в капиллярах крови, что компенсируется высокой плотностью капилляров на единицу объема тканей. Например, в скелетной и сердечной мышцах Р02 в капиллярах может снизиться чрезвычайно быстро во время сокращения. В мышечных клетках содержится белок миоглобин, который имеет более высокое сродство к кислороду, чем гемоглобин. Миоглобин интенсивно насыщается кислородом и способствует его диффузии из крови в скелетную и сердечную мышцы, где он обусловливает процессы биологического окисления. Эти ткани способны экстрагировать до 70 % кислорода из крови, проходящей через них, что обусловлено снижением сродства гемоглобина к кислороду под влиянием температуры тканей и рН.

Эффект рН и температуры на сродство гемоглобина к кислороду. Молекулы гемоглобина способны реагировать с ионами водорода, в результате этой реакции происходит снижение сродства гемоглобина к кислороду. При насыщении гемоглобина менее 100 % низкое рН понижает связывание кислорода с гемоглобином — кривая диссоциации оксигемоглобина смещается вправо по оси х. Это изменение свойства гемоглобина под влиянием ионов водорода называется эффектом Бора. Метаболически активные ткани продуцируют кислоты, такую как молочная, и С02. Если рН плазмы крови снижается от 7,4 в норме до 7,2, что имеет место при сокращении мыщц, то концентрация кислорода в ней будет возрастать вследствие эффекта Бора. Например, при постоянном рН 7,4 кровь отдавала бы порядка 45 % кислорода, т. е. насыщение гемоглобина кислородом снижалось до 55 %. Однако когда рН снижается до 7,2, кривая диссоциации смещается по оси х вправо. В результате насыщение гемоглобина кислородом падает до 40 %, т. е. кровь может отдавать в тканях до 60 % кислорода, что на 1/з больше, чем при постоянном рН.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Метаболически активные ткани повышают продукцию тепла. Повышение температуры тканей при физической работе изменяет соотношение фракций гемоглобина в эритроцитах и вызывает смещение кривой диссоциации оксигемоглобина вправо вдоль оси х. В результате большее количество кислорода будет освобождаться из гемоглобина эритроцитов и поступать в ткани.

Эффект 2,3-дифосфоглицерата (2,3-ДФГ) на сродство гемоглобина к кислороду. При некоторых физиологических состояниях, например при понижении Р02 в крови ниже нормы (гипоксия) в результате пребывания человека на большой высоте над уровнем моря, снабжение тканей кислородом становится недостаточным. При гипоксии может понижаться сродство гемоглобина к кислороду вследствие увеличения содержания в эритроцитах 2,3-ДФГ. В отличие от эффекта Бора, уменьшение сродства гемоглобина к кислороду под влиянием 2,3-ДФГ не является обратимым в капиллярах легких. Однако при движении крови через капилляры легких эффект 2,3-ДФГ на снижение образования оксигемоглобина в эритроцитах (плоская часть кривой диссоциации оксигемоглобина) выражен в меньшей степени, чем отдача кислорода под влиянием 2,3-ДФГ в тканях (наклонная часть кривой), что обусловливает нормальное кислородное снабжение тканей.

– Также рекомендуем “Углекислый газ. Транспорт углекислого газа.”

Источник

© Автор: З. Нелли Владимировна, врач лабораторной диагностики НИИ трансфузиологии и медицинских биотехнологий, специально для СосудИнфо.ру (об авторах)

Красный пигмент крови человека, сложный железосодержащий белок (хромопротеин, состоящий из глобина и четырех гемов с двухвалентным железом в центре каждого) – гемоглобин (Hb), соединяясь с молекулярным кислородом (O2) в легких, образует оксигенированную форму – оксигемоглобин (HHbO2). Оксигемоглобин, приобретая уникальные свойства и обеспечивая дыхание, как одно из элементарных проявлений жизни, продолжает саму жизнь организма. Например, достаточно ввести окись углерода вместо кислорода или нарушить потребление О2 клетками при попадании цианидов (солей синильной кислоты), которые ингибируют ферментные системы тканевого дыхания, как тут же наступает гибель организма.

Дыхание, на первый взгляд, кажется совсем простым процессом. Между тем, оно основано на взаимодействии многих компонентов, составляющих гигантскую молекулу красного пигмента крови – хромопротеина гемоглобина, который, в свою очередь, отличается многообразием производных, где из их числа несомненный интерес вызывает оксигемоглобин. Итак, оксигемоглобин образуется в легких путем соединения сложного железосодержащего белка гемоглобина с кислородом, поступающим с вдыхаемым воздухом.

Образование и распад оксигемоглобина

В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 – 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.

Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина – гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением – P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.

Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:

  • Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород – идет реакция окисления (оксигенации);
  • Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо – Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда – II), переводит его (Hb) в несколько иное состояние;
  • Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс – оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах – эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.

Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.

Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель – карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.

Кривая образования и распада (диссоциации) оксигемоглобина

Агентом, гарантирующим быстрое насыщение железосодержащего белка кислородом (образование оксигемоглобина), выступает высокое напряжение (парциальное давление) О2 в легочных альвеолах (порядка 100 мм рт. ст.).

Корреляцию между степенью насыщения красного кровяного пигмента кислородом и парциальным давлением O2 (PO2) выражают в виде S-образной кривой (сигмоиды), которую называют кривой диссоциации оксигемоглобина.

Свойственная красному кровяному пигменту S-образная (сигмоида) кривая диссоциации оксигемоглобина свидетельствует о том, что контактирование первой молекулы О2 с одним из гемов Hb открывает путь присоединению других  молекул элемента остальными тремя гемами. Кривой насыщения железосодержащего белка кислородом принадлежит немалая физиологическая значимость – S-образная конфигурация позволяет крови обогатиться данным газом при изменениях концентрации кислорода в биологической жидкости в довольно обширных интервалах. К примеру, не следует ожидать таких особенных расстройств дыхательной функции крови, как выраженное кислородное голодание (гипоксия), при подъеме на высоту до 3,5 км над уровнем моря или во время перелета на самолете. Хотя PO2 во вдыхаемом воздухе сильно понизится, концентрация кислорода в крови будет находиться на достаточно высоком уровне, чтобы обеспечить насыщение Hb данным газом. На это указывает и отлогий график формирования и распада оксигемоглобина на верхнем его отрезке (верхний отрезок кривой свидетельствует о течении процесса насыщения О2 красного пигмента крови в легочной паренхиме и находится в пределах 75 – 98%).

Кривая диссоциации оксигемоглобина может быть разделена на 4 отрезка, каждому их которых соответствует определенный период образования оксигемоглобина (зависимость скорости насыщения хромопротеина кислородом от парциального давления газа в крови):

  • 0 – 10 мм рт. ст. – гемоглобин не спешит насыщаться;
  • 10 – 40 мм рт. ст. – оксигенация резко ускоряется (стремительный подъем кривой), доходя до 75%;
  • 40 – 60 мм рт. ст. – оксигенация заметно замедляется, потихоньку добираясь до 90%;
  • Значения PO2 пересекают отметку 60 мм рт. ст. – насыщение идет слабо (линия лениво ползет вверх). Однако кривая медленно продолжает стремиться к отметке 100%, но, так и не достигнув ее, останавливается на уровне 96 – 98%. Кстати, и такие показатели насыщения Hb кислородом отмечаются только у молодых и здоровых людей (PO2 артериальной крови ≈ 95 мм рт. ст., легочных капилляров – ≈ 100 мм рт. ст.). С возрастом дыхательные способности крови снижаются.

Несовпадение парциального давления кислорода артериальной крови и смеси газов в альвеолах легких трактуется:

  1. Некоторыми разногласиями между интенсивностью тока крови и вентилированием разных отделов главного органа дыхания – легких;
  2. Притоком незначительного объема крови из бронхиальных вен в венозные сосуды легких (шунтирование), где, как известно, течет артериальная кровь;
  3. Прибытием доли крови из коронарных вен в левый желудочек сердца посредством тебезиевых вен (вены Тебезия-Вьессена), в которых проходимость возможна в обоих направлениях.

Между тем, причины, вследствие которых кривая образования и диссоциации оксигемоглобина приобрела сигмоидную форму, пока остаются не до конца выясненными.

Смещение кривой диссоциации оксигемоглобина

Но кривая диссоциации оксигемоглобина, о которой идет речь выше, справедлива, если в организме все нормально. В других ситуациях график может сдвигаться в ту или иную сторону.

В числовом выражении сродство гемоглобина к кислороду обозначается величиной P50 – напряжение полунасыщения красного пигмента крови кислородом или иными словами: парциальное напряжение О2, при котором 50% Hb пребывает в форме оксигемоглобина (оптимальные условия: рН – 7,4, tº – 37ºC). Нормальные значения этого показателя в артериальной крови приближаются к величине 34,67 гПа (26 мм рт. ст.). Смещение графика вправо указывает на то, что способность красного кровяного пигмента соединяться с кислородом снижается, что, естественно, увеличивает значения P50. И, наоборот – смещение кривой влево говорит об увеличении сродства этого хромопротеина к кислороду (↓P50.).

Ходу сигмоиды помогают некоторые факторы, повышающие обогащение крови кислородом и таким образом участвующие в тканевом дыхании, поэтому названные вспомогательными:

  • Повышение водородного показателя (pH) крови (эффект Бора), поскольку способность гемоглобина присоединять кислород связана с водородным показателем (pH) данной биологической среды (гемоглобин представляет одну из четырех буферных систем и влияет на регуляцию кислотно-основного баланса, поддерживая pH на нужном уровне: 7,36 – 7,4). Следовательно, чем выше водородный показатель, тем активнее ведет себя гемоглобин в отношении кислорода и наоборот – снижение pH отнимает возможности хромопротеина присоединять кислород, например: ↓pH до 7,2 заставит график отклоняться вправо (≈ на 15%), ↑pH до 7,6 передвинет кривую диссоциации оксигемоглобина влево (≈ на 15%);
  • Отделение углекислого газа от карбогемоглобина в легких и выход СО2 с выдыхаемым воздухом (эффект Бора-Вериго) на фоне повышения водородного показателя создает условия для жадного насыщения гемоглобина кислородом (образование оксигемоглобина в легких);
  • Возрастание уровня значимого для обмена фосфата – 2,3-дифосфоглицерата (2,3-ДФГ), содержание которого в крови меняется в зависимости от условий протекания обменных процессов;
  • Снижение температуры в легких (в тканях она выше, нежели в легких) и чем ниже упадет tº, тем больше способностей присоединять кислород появляется у железосодержащего белка (при повышении температуры идет обратный эффект).

Уровень красного пигмента в крови, а также его способность присоединять кислород (кривая диссоциации оксигемоглобина) в некоторой степени подвержены возрастным колебаниям. Так, у младенцев, только-только известившим мир о своем появлении первым криком, количество гемоглобина заметно выше, что объясняется присутствием фетального гемоглобина, который, как известно, обладает повышенным сродством к кислороду. Красный пигмент крови стариков, напротив, постепенно снижает способности связывать кислород.

В заключение хочется заметить, что гемоглобин не только имеет сродство к кислороду и довольно легко соединяется с углекислым газом. Кроме физиологических соединений красного кровяного пигмента при определенных условиях возникают связи с другими газами, в частности – с угарным газом (CO) и оксидом азота (NO), причем соединение происходит также непринужденно

Высокое сродство Hb к угарному газу влечет образование карбоксигемоглобина (HHbCO), который препятствует соединению хромопротеина с кислородом, а в результате этого ткани остаются без O2. К чему это может привести – всем известно: при отравлении угарным газом высок риск смертельного исхода, если вовремя не помочь человеку.

При отравлении оксидом азота или парами нитробензола гемоглобин переходит в метгемоглобин (HHbOH) с изменением валентности железа (II → III). Метгемоглобин также не позволяет кислороду соединиться с гемоглобином, в итоге – наступает кислородное голодание тканей, создается угроза жизни организма.

Видео: о транспорте кислорода и углекислого газа гемоглобином

Рекомендации читателям СосудИнфо дают профессиональные медики с высшим образованием и опытом профильной работы.

На ваш вопрос в форму ниже ответит один из ведущих авторов сайта.

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным платежом по ссылке.

Источник

ГЕМОГЛОБИНОМЕТРИЯ (гемоглобин + греч, metreo измерять) — определение количества (концентрации) гемоглобина крови. В клин, лабораторной практике Г. проводится при исследовании больных, проф. осмотрах, экспертизе.

Существуют три основные группы методов Г.: колориметрические, газометрические и по содержанию железа в крови. Кроме того, имеется полуколичественный метод определения концентрации гемоглобина по удельному весу крови.

Колориметрические методы определения гемоглобина, разработанные в своей основе Велькером (H. Welcker), У. Говерсом, Г. Сали в 19 в., основаны на способности гемоглобина крови давать при хим. реакциях цветные производные — оксигемоглобин, карбоксигемоглобин, метгемоглобин, гемиглобинцианид, солянокислый гемин и т. д.

Гемометр ГС-3: 1 — градуированная пробирка, верхняя часть которой выступает над гемометром, градуированная часть видна в средней прорези; 2 — запаянные пробирки со стандартным окрашенным раствором видны в боковых прорезях; 3 — штатив с тремя прорезями.

Гемометр ГС-3: 1 — градуированная пробирка, верхняя часть которой выступает над гемометром, градуированная часть видна в средней прорези; 2 — запаянные пробирки со стандартным окрашенным раствором видны в боковых прорезях; 3 — штатив с тремя прорезями.

Существуют различные конструкции аппаратов, применяемых при этом методе Г.: от визуальных, типа компараторов и колориметров, до фотоэлектрометрических колориметров и фотометров (см. Колориметрия, Фотометрия, Спектрофотометрия). Ряд гемометров (Флейшля—Мишера, Бюркера, Аутенрита, «Мигос», «Цейсс-Икон», «Сикка») устарели. Для широкой практической работы в СССР выпускают гемометры ГС-З (гемометр Сали, вариант № 3; рис.), представляющие небольшой штатив из темной пластмассы с тремя смотровыми окошками. К прибору приложены пипетки, среди них точно отградуированная пипетка на 20 мкл для забора крови. В крайних гнездах стойки расположены запаянные пробирки со стандартным р-ром. В среднее гнездо штатива вставляется градуированная пробирка с пробой крови, разведенной децинормальной соляной к-той. Градуированная пробирка имеет две контрольные круговые метки: нижняя соответствует 0,2 мл, а верхняя — 2 мл. Шкала пробирки градуирована в грамм-процентах.

Первоначально количество гемоглобина было принято обозначать в так наз. единицах Сали, за 80 ед. была принята кровь с содержанием 5 ООО ООО эритроцитов в 1 мкл. Затем эти единицы стали выражать в процентах к норме. Но авторы разных типов гемометров принимали за 100% разные концентрации гемоглобина: от 14 до 17,3 г%. Поэтому величины процентного содержания гемоглобина были несопоставимыми. Осуществляется переход на выражение концентрации гемоглобина в грамм-процентах (г%) — количество гемоглобина в граммах в 100 мл крови. В СССР за 100% принято 16,7 г%. Т. о., 1 г% соответствует в процентном исчислении 6%.

Гемометры типа Сали требуют регулярной стандартизации и проверки, поскольку цвет стандартных р-ров со временем изменяется. Кроме того, оценка результатов отличается субъективностью, у разных исследователей расхождение показателей может достигать 15% и больше у одного и того же исследуемого.

Определение концентрации гемоглобина гемометром ГС-3 (Сали). Необходимые реактивы: децинормальный р-р соляной к-ты и дист, вода. Ход определения: капиллярной пипеткой гемометра — пипеткой Сали — насасывают выступающую из прокола кожи кровь до отметки 0,02 (20 мкл) и осторожно (чтобы не вспенить смесь) выдувают в градуированную пробирку гемометра с децинормальным р-ром соляной к-ты, предварительно налитой до нижней круговой метки; капилляр трижды осторожно промывают в смеси, содержимое пробирки перемешивают стеклянной палочкой и пробирку вставляют в среднее гнездо гемометра между эталонами; выжидают 5 мин. При реакции гемоглобина с децинормальным р-ром соляной к-ты образуется солянокислый гемин, который имеет бурое окрашивание. Под визуальным контролем в пробирку добавляют дист, воду (пипеткой по каплям), перемешивая р-р стеклянной палочкой и сравнивая окраску р-ра солянокислого гемина в средней пробирке с цветом стандарта в ампулах. Когда окрашивание испытуемого р-ра совпадает по цвету со стандартами, пробирку извлекают из гнезда прибора, определяют по шкале пробирки уровень жидкости (по нижнему краю мениска р-ра), что соответствует концентрации гемоглобина.

Определение концентрации гемоглобина фотоэлектрическим эритрогемометром (одновременно можно подсчитать количество эритроцитов). Метод основан на превращении гемоглобина крови в оксигемоглобин. Реактив для раз-, ведения крови содержит 1 г карбоната натрия в 1 л дист. воды. Ход определения: в пробирку с 5 мл реактива пипеткой от гемометра Сали вносят 40 мкл крови, осторожно перемешивают и выливают в кювету эритрогемометра. Измеряют степень поглощения р-ром гемоглобина волн определенной длины синей части спектра в соответствии с руководством к пользованию прибором. Шкала эритрогемометра составлена в грамм-процентах.

Определение концентрации гемоглобина фотоэлектроколориметром ФЭК-М или ФЭК-56 по Г. В. Дервизу и А. И. Воробьеву основано на превращении гемоглобина крови в оксигемоглобин, образующийся при гемолизе эритроцитов р-ром аммиака. Реактив: 0,024 н. (т. е. 0,04%) р-р аммиака. Ход определения: в пробирку с 4 мл 0,04% р-ра аммиака пипеткой Сали вносят 20 мкл крови с обычным трехкратным ополаскиванием ее. Пробирку встряхивают и выливают в кювету. Определение гемоглобина на ФЭК-М проводится при зеленом фильтре и в соответствии с правилами пользования прибором.

По величине экстинции (показатель оптической плотности) находят соответствующее значение концентрации гемоглобина в грамм-процентах. Калибровочная кривая составляется для каждого данного аппарата по стандартному р-ру гемоглобина.

Определение концентрации гемоглобина в колориметре «Линсон Юниор», приложенном к целлоскопу фирмы «АВ Ljung berd» (Швеция): гемоглобин из эритроцитов выделяется при гемолизе р-ром сапонина. Реактивы: р-р для разведения крови содержит 0,9% р-р хлорида натрия — 950 мл, фосфатный буфер М/15 pH 7,55 — 45 мл, 35% р-р нейтрального формалина — 5 мл; 2% р-р сапонина в 0,9% р-ре хлорида натрия. Р-р хранится в холодильнике не более двух дней.

Ход определения: в пробирку с 4 мл р-ра для разведения крови вносят 20 мкл крови, затем добавляют 0,1 мл р-ра сапонина, перемешивают, выливают в кювету прибора и фотометрируют. К прибору прилагается таблица, по к-рой показатель шкалы оптической плотности переводится в грамм-проценты.

Фотоэлектрические гемометры ГФ-1, ГФ-2 и ГФ-3 с проточными кюветами предназначены для массовых исследований в условиях лаборатории. Шкалы этих аппаратов калиброваны как для оксигемоглобинового, так и для гемиглобинцианидного метода.

Применение гемиглобинцианидного метода основано на превращении гемоглобина крови в гемиглобинцианид при добавлении к крови трансформирующего реактива, содержащего цианистые соединения. Реактив: 200 мг железосинеродистого калия, 50 мг цианида калия, 140 мг монофосфата калия и 0,5 мл Sterox Se (концентрированного) растворяют в дист, воде и доводят объем р-ра до 1 л: pH по pH-метру должен быть 7,0—7,4. Реактив длительное время может сохраняться в бутыли из темного стекла, желательно в холодильнике (при t° 4°). Можно применить и реактив, предложенный Драбкиным: железосинеродистый калий (красная кровяная соль) — 0,2 г, цианид калия — 0,05 г, бикарбонат натрия — 1 г, дист, вода — до 1 л.

Ход определения: в пробирку с 5 мл реактива вносят 20 мкл крови, хорошо смешивают и оставляют для образования гемиглобинцианида на 2—4 мин. (при работе с реактивом Драбкина, который имеет щелочную реакцию pH 8,6 и поэтому образование гемиглобинцианида идет медленно,— на 20 мин.). Затем переливают в кювету и определяют концентрацию гемоглобина на калиброванном фотоэлектроколориметре или спектрофотометре.

Применение р-ров цианметгемоглобина в колориметрическом Методе Г. признано Международным комитетом по стандартизации в гематологии наиболее точным и объективным методом Г. Указанный комитет выпускает эталонный долгохранящийся р-р гемиглобинцианида для стандартизации и постоянной проверки и калибровки гемометров.

В СССР выпускаются стандартные (эталонные) р-ры циансодержащего трансформирующего реактива по Драбкину. Раствор гемиглобин-цианида утвержден как унифицированный стандарт для определения концентрации гемоглобина в клинико-диагностических лабораториях.

Газометрические методы основаны на использовании свойства гемоглобина присоединять кислород или окись углерода в строго определенных объемах. Используют приборы Ван-Слайка, Баркрофта (см. Ван-Слайка методы).

Расчет концентрации гемоглобина по количеству железа в пробе крови. Количество железа в четырех геминовых группах молекулы гемоглобина составляет 0,347%, следовательно, по количеству железа можно установить содержание гемоглобина. Эта группа методов в клинических лабораториях не применяется.

Полуколичественный метод (купросульфатный) определения концентрации гемоглобина по удельному весу крови был разработан Ван-Слайком (D. D. Van Slyke). Сотрудники ЦОЛИПК применили этот метод для быстрого отбора доноров. Принцип метода основан на том, что удельный вес реактива выбирают соответственно пограничной концентрации гемоглобина, допустимой для отбора доноров: в зависимости от удельного веса капля крови всплывает или опускается на дно сосуда с реактивом, что свидетельствует об уменьшенной или нормальной концентрации гемоглобина в крови. Приготовление реактива: на 2 л дист, воды берут 500 г сульфата меди (чистый, для анализа); полученный р-р фильтруют через бумажный складчатый фильтр и затем, прибавляя небольшие количества дист, воды, доводят до удельного веса 1,052 под контролем урометра, поддерживая температуру р-ра и воды на уровне 20°. Ход определения: в стаканчик наливают раствор сульфата меди высотой 5 см. Чистой и сухой пастеровской пипеткой набирают кровь и с высоты 1 см над уровнем р-ра выпускают каплю в стаканчик. Сначала капля крови опускается на глубину 2—3 см. Если через 10—15 сек. она всплывает или остается взвешенной в толще р-ра, то концентрация гемоглобина крови ниже 12 г%, если погружается на дно р-ра,— выше 12 г%. Между последующими определениями должно пройти не менее 1 мин., в течение к-рой все капли оседают на дно.

Нормальное содержание гемоглобина в крови: для женщин среднее значение 13,0 г%, колебания 12,0—14.0 г%; для мужчин среднее значение 14,5 г%, колебания 13,0—16.0 г%.

Библиография: Дeрвиз Г. В. Применение фотоэлектроколориметров (ФЭК-М и ФЭК-56) для цианметгемоглобинового метода’ определения концентрации гемоглобина в крови, Лаборат, дело, № 2, с, 67, 1973, библиогр.; К о р ж у e в П; А. Гемоглобин, М., 1964, библиогр.; Кушаковский М. С. Клинические формы повреждения гемоглобина, с. 25, Л., 1968; Соколов В. В. и Грибова И. А. Показатели периферической крови у здоровых людей, Лаборат, дело, № 5, с. 259, 1972; Справочник по клиническим лабораторным методам исследования, под ред. Е. А. Кост, с. 5, М., 1975; Унифицированные методы клинических лабораторных исследований, под ред. В. В. Меншикова, в. 6, с. 103, М., 1974, библиогр.; Ярустовская JI. Э., Реутова М. Б. иЛипацА. А. Показатели периферической крови у здоровых людей, Пробл, гематол. и* перелив, крови, т. 14, № 2, с. 29, 1969, библиогр.; Antonini E. a. Brunori М. Hemoglobin, Ann. Rev. Biochem., v. 39, p. 977, 1970; S t o b b e H. Untersuchun-gen von Blut und Knochenmark, S. 177, B., 1968; Sunderman F. W. Status of clinical haemoglobinometry in the United States, в кн.: Standardization, documentation a. normal values in haematology, ed. by C. G. de Boroviczeny, p. 25, Basel — N. Y., 1965.

Источник