Полипептидные цепи молекуле гемоглобина уложены структуру

Полипептидные цепи молекуле гемоглобина уложены структуру thumbnail

ЧАСТЬ I. КОНФОРМАЦИЯ И ДИНАМИКА

ГЛАВА 3. ПЕРЕНОСЧИКИ КИСЛОРОДА—МИОГЛОБИН И ГЕМОГЛОБИН

3.11. Гемоглобин состоит из четырех полипептидных цепей

Обратимся теперь к гемоглобину-белку, родственному миоглобину. Если миоглобин состоит из одной полипептидной цепи, то гемоглобин-из четырех. Эти четыре цепи удерживаются вместе нековалентными связями. Каждая цепь содержит один гем, и, таким образом, в молекуле гемоглобина имеются четыре участка связывания кислорода. Гемоглобин А-основной гемоглобин взрослого организма-состоит из двух цепей одного типа, называемых а-цепи, и двух цепей другого типа, называемых β-цепи. В целом субъединичная структура гемоглобина А описывается формулой α2β2. У взрослых есть, кроме того, минорный гемоглобин А2, на долю которого приходится примерно 2% общего количества гемоглобина; субъединичная структура этого гемоглобина α2δ2. Эмбрионы содержат другие гемоглобины. На ранних этапах эмбрионального развития выявляется гемоглобин плода α2ε2. На смену ему приходит гемоглобин F с субъединичной структурой а2у2. Биологическое значение этих разных гемоглобинов представляет собой очень интересную проблему, которую мы обсудим в следующей главе. Общая для всех перечисленных гемоглобинов α-цепь содержит 141 аминокислотный остаток, β, δ и γ-Цепи содержат по 146 остатков с очень схожей последовательностью аминокислот (рис. 3.23).

Рис. 3.23. β-, γ- и δ-Цепи гемоглобинов человека обладают сходными аминокислотными последовательностями. Для примера показаны участки трех цепей с остатками от F1 до F9

Полипептидные цепи молекуле гемоглобина уложены структуру

3.12. Рентгеноструктурный анализ гемоглобина

Как упоминалось ранее, пространственную структуру гемоглобина А определили Макс Перутц и сотрудники. Этот монументальный труд был начат в 1936 г., когда для выполнения дипломной работы Перутц уехал из Австрии в Англию в Кембридж и начал работать в лаборатории Джона Бернала (J. Bemal), где двумя годами ранее были получены первые рентгеновские отпечатки кристаллов белка. Бернал и студентка- дипломница Дороти Кродфут Ходжкин (D. С. Hodgkin) получили отличные отпечатки дифракции пепсина и таким образом показали, что белкам свойственна точно определенная структура. Еще в 1934 г. они предсказали перспективность применения рентгеноструктурного анализа как метода, «позволяющего получить гораздо более подробные сведения о белковой структуре по сравнению с тем, что могли дать предшествовавшие физические и химические подходы». Прошло, однако, более 20 лет, прежде чем этот прогноз оправдался. В тот период, когда Перутц избрал объектом своей работы гемоглобин, самым высокомолекулярным соединением с расшифрованной структурой был краситель фталоцианин, состоящий из 58 атомов. Перутц же взялся за молекулу в сотни раз большую. Не удивительно, что «мои товарищи смотрели на меня с жалостливой улыбкой… По счастью, экзаменаторы, принимавшие мою дипломную работу, не настаивали на окончательном установлении структуры, иначе бы я оставался студентом-дипломником в течение 23 лет». Однако Лоуренс Брэгг (L. Bragg), который вместе со своим отцом впервые в 1912 г. применил рентгеноструктурный анализ, стал в это время во главе Кавендишской лаборатории и поддержал работу Перутца. Он писал: «Я не обманывал себя в отношении перспективы. Дело выглядело так, как если бы нулевую вероятность успеха помножили на бесконечную важность искомого результата; результат этой математической операции был никому не известен». Успех пришел в 1959 г., когда Перутц получил карту электронной плотности низкого разрешения для оксигемоглобина лошади. Впоследствии были получены карты высокого разрешения как для окси-, так и дезоксигемоглобина лошади и человека. Гемоглобины этих двух видов очень близки по своей структуре.

3.13. Четвертичная структура гемоглобина

Молекула гемоглобина имеет почти правильную форму шара диаметром 55 А. Четыре цепи, образующие молекулу гемоглобина, расположены в виде тетраэдра (рис. 3.24). Четыре гема, по одному у каждой субъединицы, находятся в углублениях на внешней стороне молекулы. Эти четыре кислородсвязывающих участка расположены далеко друг от друга: расстояние между двумя ближайшими атомами железа составляет 25 А. Каждая α-цепь контактирует с обеими β-цепями. В то же время взаимодействия между двумя а- или между двумя β-цепями незначительны.

Рис. 3.24. Модель гемоглобина при низком разрешении. α-Цепь показана желтым, β-цепь-синим, гем-красным

Полипептидные цепи молекуле гемоглобина уложены структуру

3.14. α- и β-Цепи гемоглобина очень сходны с миоглобнном

Пространственные структуры миоглобина и α- и β-цепей гемоглобина обладают поразительным сходством (рис. 3.25). Близкое подобие в конфигурации основных цепей этих белков оказалось неожиданным, поскольку в последовательности аминокислотных остатков в этих трех полипептидных цепях существует много различий. Собственно, только 24 положения из 141 идентичны во всех трех полипептидных цепях; это показывает, что очень сходные пространственные структуры могут быть обусловлены совершенно разной последовательностью аминокислот (рис. 3.26).

Рис. 3.25. Сравнение конформаций главной цепи миоглобина и (3-цепи гемоглобина. Сходство конформаций совершенно очевидно

Полипептидные цепи молекуле гемоглобина уложены структуру

Рис. 3.26. Сравнение аминокислотных последовательностей миоглобина кашалота и α- и β-цепей гемоглобина человека на примере участка от остатка F1 от остатка F9. Последовательности аминокислот имеют гораздо меньше сходства, чем пространственные структуры этих трех полипептидных цепей

Полипептидные цепи молекуле гемоглобина уложены структуру

Совершенно очевидно, что пространственная конфигурация миоглобина кашалота и α- и β-цепей гемоглобина человека имеет общебиологическое значение. В сущности, эта структура свойственна всем миоглобинам и гемоглобинам позвоночных. Сложная конфигурация полипептидной цепи, впервые выявленная на примере миоглобина, это та основная форма, которую природа предназначила для переносчика кислорода: смысл ее в том, что вокруг гема создается такое микроокружение, которое обеспечивает обратимость связывания кислорода.

Источник

    Гемоглобин – переносчик кислорода в организме человека. Этот белок состоит из четырех пептидных цепей. Две идентичные а-цепи содержат по 141 аминокислотному остатку и две идентичные (3-цепи – по 146 остатков. [c.523]

    Увеличение сродства к кислороду по мере его присоединения к гемоглобину представляет собой кооперативный эффект (разд. 20.4), который обусловлен изменениями в пространственной структуре пептидных цепей гемоглобина [3]. Это явление называют аллостерическим эффектом подобные эффекты наблюдаются и в случае ферментов. [c.232]

    Размеры молекул глобулярных белков свидетельствуют о том, ЧТО длина их пептидных цепей сравнительно невелика. Несмотря на ТО, ЧТО эти белки содержат очень большое число аминокислот, их пептидные цепи включают только 10—20 аминокислотных остатков. Молекула гемоглобина, вес которой равен 68 ООО, при- [c.120]

    По мере того, как в круг исследований втягиваются все более сложные белки — гемоглобин (мол вес. 66 000) химотрипсин (мол вес 22 000), пепсин (мол. вес 35 000) яичный альбумин и, наконец, вирусы, молекулярный вес которых достигает 10 степени, возникает вопрос, ограничивается ли строение этих белков только образованием громадных пептидных цепей, не образуются ли эти гигантские молекулы за счет каких-либо других связей не являются ли они ассоциата ми более простых образований возникающих за счет много численных полярных групп, со держащихся в молекуле белка К этому следует еще доба вить, что при обсуждении во проса о строении молекулы белка мы ограничивались так называемыми простыми белками, построенными из одних аминокислотных остатков. По мере накопления наших знаний круг простых белков становится все более ограниченным, первостепенное значение приобретают так называемые сложные белки. Они характеризуются тем, что собственно белковая молекула соединена [c.532]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Пигмент крови — гемоглобин имеет четыре окрашивающих группы на молекулу. Его молекулярный вес в четыре раза больше, чем миоглобина. Хотя гемоглобин и отличается от миоглобина по аминокислотному составу, конформация каждой из четырех его субъединиц поразительно напоминает конформацию пептидной цепи миоглобина. [c.340]

    Каждая частица гема связана с пептидной цепью, непосредственная связь осуществляется атомом железа с остатком гистидина пептидной цепи (с. 569). Итак, атом железа в гемоглобине координационно связан шестью лигандами, четыре из которых — атомы азота порфирина, пятый — азот гистидина, и шестым, изменяю- [c.543]

    В заключение необходимо остановиться еще на четвертичной структуре белков. Этот уровень организации возникает благодаря ассоциации нескольких (двух или более) макромолекул (так называемых субъединиц) в единую комплексную глобулу. Примером подобной ассоциации служит молекула гемоглобина, состоящая из четырех пептидных цепей и легко разделяющаяся на две субъединицы, содержащие по две полипептидные цепи. [c.95]

    ЛИ эти пептидные слои образуют складки или же несколько двумерных слоев сочетаются друг с другом таким образом, что образуется глобулярная частица. Этот вопрос был до настоящего времени исследован только в отношении гемоглобина (см. гл. XI). Предполагаемая структура молекулы гемоглобина изображена на фиг. 52 [151]. Молекула состоит из четырех пептидных слоев, из которых каждый образован зигзагообразно свернутой пептидной цепью, уложенной в пять складок. [c.411]

    Согласно Портеру и Зангеру [80], гемоглобин лошади состоит из шести открытых пептидных цепей. Данные химического анализа указывают на то, что число дисульфидных групп (S—S) не превышает двух поэтому должны существовать и другие поперечные связи между пептидными цепями, прочность которых должна быть того же порядка, что и прочность дисульфидных связей. [c.234]

    За какое время на рибосоме образуется одна субъединица гемоглобина За какое время пептидная цепь гемоглобина удлиняется на одну аминокислоту Учитывать, что ретикулоциты не содержат ядер и, следовательно, новые РНК (и новые рибосомы) в них не образуются. Сколько пептидных цепей гемоглобина должно в таком случае синтезироваться на одной рибосоме ретикулоцита При решении следует исходить из содержания гемоглобина в эритроците. Данные для его вычисления в 100 мл крови — 5-10 эритроцитов и 15 г гемоглобина 1 моль гемоглобина имеет массу 75 ООО г и содержит 6-10 молекул. [c.321]

    Например, третичная структура молекулы гемоглобина (миоглобина), включающая гем с атомом железа, представляет собой шарообразный клубок (глобулу). Часть пептидной цепи, которая не образует спирали, содержит аминокислоты с отрицательным зарядом. [c.535]

    Близость порфирииовой системы к определенным остаткам пептидной цепи гемоглобина может стерически препятствовать связыванию СО или О2 с Ре(П). Чтобы оценить влияние такого стерического эффекта, Трейлор и сотр. разработали два варианта [c.363]

    Пептидные цепи глобулярных белков сильно изогнуты, свернуты и часто имеют форму жестких шариков — глобул. Молекулы глобуляр ных белков обладают низкой степенью асимметрии, они хорошо раство римы в воде, причем вязкость их растворов невелика. Это прежде всего белки крови — гемоглобин, альбумин, глобулин, многие протеолитичео ские ферменты и др. [c.375]

    Как известно, участок ДНК, несущий информацию о синтезе индивидуального белка, называется геном, а участок, контролирующий синтез единственной полипептидной цепи и ответственный за него,— цистроном. Следовательно, если белок состоит из нескольких (более одного) полипептидов, то естественно предположить, что в синтезе такого белка должны участвовать несколько (более одного) цистронов. Это не всегда соответствует действительности, особенно если полипептидные цепи идентичны (например, а,- и р -цепи гемоглобина). Если, например, пептидные цепи какой-либо одной белковой молекулы являются неидентичными, то это не всегда означает, что они синтезируются как результат действия разных цистронов. Подобный белок может синтезироваться в виде единственной полипептидной цепи с последующими протеолитическими разрывами в одном или нескольких местах и отщеплением неактивных участков. Типичным примером подобной модификации является гормон инсулин, синтезирующийся в виде единого полипептида препроинсулина, который после ферментативного гидролиза превращается сначала в неактивный предшественник проинсулин, а затем в активный гормон инсулин, содержащий две разных размеров и последовательности полипептидные цепи (см. рис. 1.14). [c.532]

    Жизненно важным пигментом крови, переносящим кислород у большинства животных, в том числе у млекопитаю-ших, является гемоглобин — гемопротеин, который в качестве простетнческой группы содержит протогем (5.23), представляющий собой Fe-хелатный комплекс протопорфирина IX. Мышцы содержат структурно и функционально сходный с ним пигмент — миоглобин. Эти два белка были первыми белками, трехмерная структура которых была установлена с помощью рентгеноструктурного анализа. Миоглобин имеет единственную полипептид-ную цепь, состоящую из 153 аминокислотных остатков (мол. масса 17 800). Его трехмерная структура показана на рнс. 5.7. Пептидная цепь миоглобина свернута таким образом, что его молекула очень компактна. Около трех четвертей цепи имеет структуру а-спирали, в которую входят восемь различных спи-рализованных сегментов. С наружной стороны молекулы рас- [c.167]

    Первичная структура белков определяется их составом и может быть описана последовательностью а-аминокислотных остатков в поли-пептидных цепях. Эта последовательность определяет строение белка. Для установления первичной структуры используются разнообразные методы деструкции, которые были уже рассмотрены в разделе, посвященном пептидам. Однако исследование первичной структуры белков вследствие наличия более длинных цепей является гораздо более сложным делом и связано с большими затратами времени, чем у пептидов. К примеру, миоглобин содержит одну нолипептидную цепь, состоящую из 153 аминокислотных остатков, а глобин имеет четыре полииеитидные цепи, две пары которых построены аналогично и содержат соответственно 141 (а-цепи) и 146 (р-цепи) аминокислотных остатков. В одной из патологических форм гемоглобина, возникающей при серповидной анемии и наблюдаемой прежде всего у африканцев, только один единственный аминокислотный остаток глутамина в р-цепи нормального глобина замещен на остаток валина. [c.656]

    Синтез глобина. Цепи аир глобина синтезируются на полисо-мах, образованных, как правило, пятью рибосомами. Цепь а освобождается первой, присоединяется к р-цепи, еще связанной с рибосомой, и отделяет ее, образуя димер (аР). Два димера соединяются в молекулу НЬ (а2Р2). Соединение гема с глобином может происходить или в процессе синтеза полипептидных цепей или после окончания синтеза глобина. Ферменты синтеза гема аллостерические, ингибируются гемом и гемоглобином. Синтез пептидных цепей происходит только в присутствии гема. При низкой концентрации гема синтез глобина замедляется. Отсюда синтез гема и глобина происходит координированно и ни один из этих компонентов не образуется в избыточном или недостаточном количестве. [c.435]

    Гемоглобин состоит из двух а-цепей и двух р-цепей, которые отличаются друг от друга и от цепи миоглобина лишь небольшими деталями, но в основных чертах имеют большое сходство с последней. Каждая из четырех составляющих гемоглобин цепей содержит гем-группу, образуя вокруг нее гидрофобную полость, как и в миоглобине. а-Цепь состоит из 141 аминокислотного остатка, а р-цепь — из 146 остатков. Молекулярная масса гемоглобина равна примерно 64500. Отдельные цепи не связаны ковалентно, но удерживаются друг возле друга, по-видимому, в основном за счет гидрофобных связей. Подобно мпоглобинам, гемоглобины различного происхождения несколько отличаются последовательностью аминокислот в цепях. Кроме того, известно много разновидностей патологических видоизменений гемоглобина человека. Детальную информацию о последовательности аминокислотных остатков и структур пептидных цепей можно найти в работе Дикерсона и Гейса [12]. [c.375]

    Свойства Б. зависят прежде всего от их химич. строения. Известны случаи, когда даже незначительные из-менения аминокислотного состава приводят к существенным изменениям свойств Б. Напр., замена всего лишь одного аминокислотного остатка из трехсот в мoлeк Jгe гемоглобина, а именно остатка глутаминовой к-ты на остаток валина, резко меняет свойства этого Б. Получающийся при этом т. н. ге-моглобиц-З ( серповидный ) вызывает серьезное заболевание крови — серповидную анемию. На примерах окситоцина и вазопрессина также видно, что небольшие отличия в аминокислотном составе этих гормонов связаны с совершенно разным характером их биологич. активности. Биологич. активность и др. свойства Б. в значительной степени определяются также способом закручивания пептидной цепи, пространственной конфигурацией макромолекул. [c.192]

    Молекулы многих белков состоят из нескольких индивидуальных поли-пептидных цепей, не связанных одна с другой ковалентными связями. К таким белкам относится, в частности, гемоглобин, молекула которого, как уже отмечалось выше, состоит из четырех полипептидных цепей и не содержит ни одного дисульфидного мостика. О таких белках говорят, что они обладают четвертичной структурой. При этом каждая из индивидуальных цепей может иметь свою собственную первичную, вторичную и третичную структуру. Теперь известно, что молекулы многих белков состоят из нескольких субъединиц. Можно думать, что из субъединиц состоят все или почти все белки с молекулярным весом больше 50 ООО. Впервые концепция о том, что белковые молекулы состоят из субъединиц, была выдвинута в 1930-х г.г. Сёренсеном и Сведбергом однако эта концепция долго не имела сторонников и получила признание лишь в последние несколько лет. [c.116]

    Определение аминокислотной последовательности — задача очень трудоемкая. Однако ее можно было бы значительно облегчить, если бы удалось выработать приемы для фрагментации длинных пептидных цепей на относительно небольшие пептиды, содержащие от 10 до 15 аминокислотных остатков, и на другой ряд более длинных пептидов, с тем чтобы можно было установить места перекрывания небольших пептидов. Такая идеальная возможность редко встречается. Практически проблема решалась несколькими путями. История изучения инсулина, рибонуклеазы и гемоглобина отражает три различных подхода. В первых исследованиях, проведенных на инсулине, изучали частичные кислотные гидролизаты динитрофепилированных пептидов (см. гл. 6), а ферменты были использованы на второй стадии работы для получения более крупных пептидов. Быстрое установление структуры рибонуклеазы оказалось возможным благодаря усовершенствованию анализа аминокислот. Аминокислотный состав пептидов, полученных [c.113]

    Прямыми линиями обозначены немеченые полипептидные цепи волнистыми — меченые полипептидпые цепи, образовавшиеся после добавления меченой аминокислоты в момент времени t,. Группы пептидов, обозначенные через К,— незавершенные полипептидные цепи, соединенные в данный момент с рибосомами. Считается, что цепи, достигшие конечной длины, переходят во фракцию растворимого гемоглобина. В момент времени (левая часть фигуры) две верхние волнистые линии соответствуют пептидным цепям, целиком образовавшимся из аминокислот за променчуток времени между 1, и 2 две средние линии — цепям, которые синтезировались в течение итого ше промежутка времени, по еше не достигли конечной длины и остались поэтому присоединенными к рибосомам, и две нижние линии — цепям, которые достигли к моменту времени конечной длины, отделились от рибосом и смешались с другими молекулами растворимого гемоглобипа. [c.527]

    Каждая частица гема связана с пептидной цепью, непосредственная связь осуществляется атомом железа с остатком гистидина пептидной цепи. Таким образом, атом железа в гемоглобине координационно связан щестью лигандами, четыре из которых атомы азота порфирина, пятый — азот гистидина, и шестым, изменяющимся в различных производных гемоглобина, может быть молекула кислорода (оксигемоглобин)  [c.547]

    Метод отпечатков пальцев нашел широкое применение в решении различных биохимических проблем. Мы приведем лишь три примера. Впервые метод был применен Ингремом [6] для выяснения различий в строении двух однотипных белков — гемоглобинов нормального здорового человека (гемоглобин А) и больного серповидной анемией (гемоглобин 8). Согласно данным рентгеноструктурного анализа, молекула гемоглобина состоит из двух одинаковых половинок, каждая из которых содержит две различные пептидные цепи а-цепь составлена из 141 аминокислотного остатка, -цепь — из [c.236]

    После расщепления дисульфидных связей белок либо распадается на составляющие его цепи (подобно инсулину), либо разворачивается, образуя одну длинную цепь (подобно рибонуклеазе). Как известно, не все белки содержат цистин однако имеются и другие возможности сшивки цепей, например при помощи фосфо-эфирных связей. Кроме того, следует иметь в виду, что трехмерная структура белка, несомненно, приводит к взаимодействию боковых цепей аминокислот друг с другом или с какими-либо участками пептидной цепи. Важную роль в образовании уникальной структуры белка, обеспечивающей его биологическую функцию, играют прочно связанные с ним вещества небелковой природы, такие, как металлы, пигменты и сахара. Молекула гемоглобина человека состоит из четырех пептидных цепей (двух а- и двух -цепей), соединенных с четырьмя геминовыми группами, которые и являются переносчиками кислорода. Структуры обеих цепей гемоглобина (по Брауницеру и др. 1 ]) и миоглобина [2, 3] приведены на фиг. 50. Интересно, что, согласно недавно опубликованной структуре субъединицы белка вируса табачной мозаики [4], в цепи из 158 аминокислотных остатков отсутствуют поперечные связи (фиг. 51). [c.113]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

Методы и достижения бионеорганической химии (1978) — [

c.33

]

Источник