Полосы поглощения в спектре гемоглобина
Лабораторная работа №22
Изучение оптических свойств
различных форм гемоглобина
Каждая форма гемоглобина
характеризуется определенным спектром поглощения, представляющим собой зависимость
оптической плотности раствора гемоглобина от длины волны света. Наиболее
интенсивной полосой в спектре поглощения гемоглобина является полоса Соре, принадлежащая
порфириновой части его молекулы (рис. 5).
Рис. 5. Спектр поглощения
производных гемоглобина. Спектры поглощения дезоксигемоглобина (1),
оксигемоглобина (2) и ферригемоглобина (3)
По изменению положения и
интенсивности поглощения этой полосы можно судить о структурных изменениях
молекул различных форм гемоглобина (табл. 22).
Таблица 22
Спектральные характеристики различных форм
гемоглобина
Формы гемоглобина | α-Полоса | β-Полоса | Полоса | |||
λ, | ελ, | λ, | ελ, | λ, | ελ, | |
Оксигемоглобин | 557 | 14600 | 542 | 13800 | 412 | 135000 |
Дезоксигемоглобин | 555 | 13500 | 430 | 119000 | ||
Карбоксигемоголобин | 569 | 13400 | 539 | 13400 | 419 | 191000 |
Оборудование
и материалы. СФ-(46) или другой спектрофотометр,
центрифуга на 9000 об/мин, центрифужные пробирки, кюветы, пенициллиновые
флаконы, пипетки Пастера, прибор для получения оксида углерода, гемоглобин кристаллический,
хлористый натрий, гепарин, бихромат калия, феррицианид калия, дитионит натрия.
Получение
раствора оксигемоглобина. Для работы рекомендуется использовать
свежеприготовленные растворы гемоглобина. Кровь берут у декапитированных животных.
Цельную кровь стабилизируют гепарином, растворенным в 0,85%-ном растворе
хлористого натрия. Для отделения плазмы стабилизированную кровь центрифугируйте
в течение 10 мин при 3000 об/мин. Плазму крови отберите пипеткой. К эритроцитам
добавьте трехкратный объем 0,85%-ного раствора хлористого натрия, осторожно при
этом размешивая суспензию стеклянной палочкой. Суспензию центрифугируйте в течение
5 мин при 6000 об/мин. Промойте эритроциты 3 раза. Промытые эритроциты
подвергните гемолизу дистиллированной водой в течение 20 мин. Стромы осадите центрифугированием
при 9000 об/мин в течение 15 мин. В прозрачном гемолизате определите содержание
гемоглобина с помощью приведенного в работе № 20 метода.
Ход
анализа
Регистрация
спектра поглощения оксигемоглобина. Раствор
оксигемоглобина разбавьте дистиллированной водой до оптической плотности
раствора, попадающей в диапазон 0,4-0,5. Снимите спектр поглощения раствора
оксигемоглобина в интервале длин волн 380-600 нм (оптическая плотность раствора
измеряется через каждые 5 нм).
Регистрация
спектра поглощения метгемоглобина. Добавьте к раствору
оксигемоглобина 1-2 капли насыщенного раствора феррицианида калия. Визуально
оцените изменение окраски. Раствор метгемоглобина имеет коричневую окраску.
Снимите спектр поглощения раствора гемоглобина в интервале длин волн 380-600
нм. Для компенсации светопоглощения за счет феррицианида в контроль добавьте
такой же объем раствора этого вещества, какой был добавлен к раствору
оксигемоглобина.
Регистрация
спектра поглощения метгемоглобина. Добавьте к водному
раствору оксигемоглобина несколько кристаллов дитионита натрия (Na2S2O4).
Визуально оцените изменение окраски. Ярко алая окраска (цвет оксигемоглобина)
переходит в синевато-красную, характерную для гемоглобина. Снимите спектр
поглощения раствора в интервале длин волн 380-600 нм.
ЗАДАНИЕ
1. Представьте в графическом виде
зависимость оптической плотности различных состояний гемоглобина от длины
поглощаемого света (спектр поглощения), откладывая по оси ординат оптическую
плотность раствора, а по оси абсцисс соответствующие длины волн.
2. Найдите минимумы и максимумы
поглощения гемоглобинов и сделайте вывод.
Гемоглобин выполняет, в организме важную роль переносчика
кислорода и принимает участие в транспорте углекислоты.
Гемоглобин представляет собой сложное химическое соединение
(молекулярный вес 68 800). Он состоит из белка глобина и четырех молекул гема.
Молекула гема, содержащая атом железа, обладает способностью соединять и
отдавать молекулу кислорода. При этом валентность железа, к которому
присоединяется кислород, не изменяется, т. е. железо остается двухвалентным.
Если обработать гемоглобин раствором соляной кислоты, то от
глобина отщепляется гем. Вступая в соединение с соляной кислотой, он
превращается в гемин
(С34Н32N4O4FeCl), образующий
кристаллы характерной формы. Проба на образование гемина производится для
доказательства присутствия крови при судебномедицинских исследованиях.
В состав молекулы гема входят четыре пиррольных кольца (два из них имеют
характер щелочи, а два – кислоты). Атом железа, содержащийся в геме, связывает
гем с белковой частью глобином. Если гем теряет атом железа, а пирроловая его
структура сохраняется, то получается гематопорфирин. Это вещество в больших
количествах образуется в организме при некоторых отравлениях или нарушениях
обмена и может выделяться с мочой.
Гем является активной, или так называемой простатической, группой
гемоглобина, а глобин — белковым носителем гема. Гемоглобин, присоединивший
кислород, превращается в оксигемоглобин (его обозначают символом
НbO2). Оксигемоглобин, отдавший кислород, называется восстановленным,
или редуцированным, гемоглобином (Нb). Оксигемоглобин, гемоглобин и
некоторые другие соединения и производные гемоглобина дают характерные полосы
поглощения лучей спектра.
Так, пропуская луч света через раствор оксигемоглобина, можно Рис. 5. Спектры поглощения оксигемоглобина (сверху) и Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому |
Значительно большее поглощение световых лучей с длиной волны 620—680 ммк
гемоглобином по сравнению с оксигемоглобином легло в основу методики измерения
степени насыщения крови кислородом — оксигемометрии. При этой методике ушную
раковину или кювету с кровью просвечивают небольшой электрической лампой и
определяют с помощью фотоэлемента интенсивность светового потока указанной длины
волны, проходящего через ткань уха или кювету с кровью. По показаниям
фотоэлемента определяют степень насыщения гемоглобина кислородом.
Кровь взрослых людей содержит в среднем 14—15% гемоглобина (у мужчин
13,5—16%, у женщин 12,5—14,5%). Общее содержание гемоглобина равно примерно 700
г.
В эмбриональном периоде в крови человека имеются разные типы гемоглобина,
отличающиеся способностью присоединять кислород в некоторыми другими химическими
свойствами. Для определения и разделения разных типов гемоглобина применяют
методику измерения оптической плотности растворов гемоглобина до и после
денатурации его едкой щелочью. Разные типа гемоглобина условно обозначают НbA,
HbF, НbР, Гемоглобин НbР встречается только в первые 7—12 недель внутриутробного
развития зародыша. На 9-й неделе появляется в крови зародыша гемоглобин HbF и
гемоглобин взрослых НbA. Существенно важным представляется тот факт, что
эмбриональный гемоглобин HbF обладает более высоким сродством к кислороду и
может насыщаться на 60% при таком напряжении кислорода, когда гемоглобин матери
насыщается всего на 30%. У разных видов позвоночных животных имеются различия в
структуре гемоглобина. Гем разных типов гемоглобина при этом одинаков, глобины
же различаются по своему аминокислотному составу.
В организме постоянно происходит синтез и распад гемоглобина, связанные с
образованием и разрушением эритроцитов. Синтез гемоглобина совершается в
эритробластах красного костного мозга. При разрушении эритроцитов, которое
происходит в ретикуло-эндотелиальной системе, главным образом в печени и
селезенке, из красных кровяных клеток выходит гемоглобин. В результате
отщепления железа от гема и последующего окисления образуется из гемоглобина
пигмент билирубин, который затем с желчью выделяется в кишечник, где
превращается в стеркобилин и уробилин, которые выводятся с калом и мочой. За
сутки разрушается и превращается в желчные пигменты около 8 г гемоглобина, т. е.
несколько более 1 %.
В организме человека и животных могут образовываться и другие соединения
гемоглобина, при спектральном анализе которых обнаруживаются характерные спектры
поглощения. К числу таких соединений гемоглобина относятся метгемоглобин и
карбокенгемоглобин. Вещества эти образуются в результате некоторых
отравлений.
Метгемоглобин (MetHb) представляет собой прочное соединение
гемоглобина с кислородом; при образовании метгемоглобина меняется валентность
железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается в
трехвалентное. В случае накопления в крови больших количеств метгемоглобина
отдача кислорода тканям становится невозможной и наступает смерть от
удушення.
Метгемоглобин отличается от гемоглобина коричневым цветом и наличием полосы
поглощения в красной части спектра. Метгемоглобин образуется при действии
сильных окислителей: феррицианида (красной кровяной соли), марганцовокислого
калия, амил- и пропилнитрита, анилина, бертолетовой соли, фенацетина.
Карбоксигемоглобин (НbСО) представляет собой соединение железа
гемоглобина с окисью углерода (СО) — угарным газом. Это соединение примерно в
150—300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь
даже 0,1 % угарного газа во вдыхаемом воздухе ведет к тому, что 80% гемоглобина
оказываются связанными окисью углерода и не присоединяют кислород, что является
опасным для жизни.
Слабое отравление угарным газом — обратимый процесс. Прп дыхании свежим
воздухом СО постепенно отщепляется от карбоксигемоглобнна и
выделяется.
Вдыхание чистого кислорода увеличивает скорость расщепления
карбоксигемоглобина в 20 раз. В тяжелых случаях отравления необходимо
искусственное дыхание (стр. 171) газовой смесью с 95% содержания 02 и 5% СО2, а
также переливание крови.
Миоглобин. В скелетной и сердечной мышце находится мышечный
гемоглобин, называемый миоглобином. Его простетическая группа — гем — идентична
этой же группе молекулы гемоглобина, а белковая часть — глобин — обладает
меньшим молекулярным весом, чем белок гемоглобина.
Миоглобин человека способен связывать до 14% от общего количества кислорода в
организме. Это его свойство играет важную роль в снабжении кислородом работающих
мышц. Если при сокращении мышцы кровеносные капилляры ее сжимаются и кровоток в
некоторых участках мышцы прекращается, то все же благодаря наличию кислорода,
связанного с миоглобином, в течение некоторого времепп сохраняется снабжение
мышечных волокон кислородом.
Поглощение света и цвет гемоглобина.Цвет растворенного вещества, не испускающего световые лучи, зависит от его способности поглощать падающий свет в той или иной части спектра видимого света. Как правило, каждое вещество поглощает свет лишь в определенной области спектра, тогда как свет других длин волн проходит через это вещество почти беспрепятственно. Цвет раствора вещества определяется спектральным составом прошедшего через него света.
Красный цвет растворов гемоглобина (и, следовательно, крови) обусловлен тем, что это вещество относительно сильно поглощает коротковолновый свет, т. е. в синей области спектра, а большую часть длинноволнового (красного) света пропускает.
При исследовании света, прошедшего через раствор оксигенированного гемоглобина, с помощью спектроскопа можно обнаружить не только полосу поглощения в синей области спектра (полосу Соре), но также две характерные темные полосы (полосы поглощения) в желтой и желто-зеленой областях спектра с максимумами при длинах волн 577 и 541 нм [11].
Дезоксигемоглобин несколько интенсивнее, чем оксигемоглобин, поглощает длинноволновые лучи и менее интенсивно – коротковолновые. В связи с этим венозная кровь выглядит темнее и имеет красный цвет с синеватым оттенком. При спектроскопическом исследовании выявляется одна широкая полоса поглощения в желто-зеленой части спектра с максимумом при длине волны 555 нм.
Спектрфотометрия. Для количественного анализа абсорбционных свойств окрашенного раствора используют спектрофотометры. В этих приборах видимый свет разлагается в спектр при помощи призмы или дифракционной решетки, а затем свет очень узкой области длин волн (так называемый монохроматический свет) проходит через исследуемый раствор. Поглощение света зависит от длины волны и от свойств раствора. Для определения соотношения между интенсивностью падающего (I0) и прошедшего (I) света используется фотоэлемент. Отношение I/I0 называется пропусканием, а отношение (I0 — I)/I0 – поглощением. Полный спектр поглощения раствора получают путем последовательного измерения этих величин для разных длин волн.
ГЛАВА 22. ТРАНСПОРТ ГАЗОВ КРОВИ 607
Рис. 22.4. Спектры поглощения оксигемоглобина (НbО2) и дезоксигемоглобина (Hb). По оси ординат слева-коэффициент поглощения, справа -экстинкция |
Спектры поглощения.На рис. 22.4 изображены спектры поглощения оксигемоглобина ндезоксигемоглобина. Тем участкам спектра, в которых при спектроскопии обнаруживаются темные полосы, соответствуют максимумы на кривой поглощения. Для оксигемоглобина характерны два таких максимума, а для гемоглобина – один, занимающий положение между ними. Из рисунка видно, что эти максимумы приходятся на те же длины волн, что и полосы поглощения.
Точки пересечения обеих кривых поглощения, или так называемые изобестические точки, соответствуют длинам волн, при которых растворы равной концентрации Hb и НbО2 пропускают свет в одинаковой степени. Если длина волны световых лучей соответствует изобестической точке, то поглощение их гемоглобином не зависит от степени его оксигенации. Монохроматический свет такой длины волны используют в тех случаях, когда необходимо определить концентрацию гемоглобина, не подвергая его химическим модификациям (см. ниже). Если же спектрофотометрию используют для измерения насыщения гемоглобина кислородом, то, напротив, выбирают свет с такой длиной волны, при которой разница между коэффициентами поглощения оксигемоглобина и дезоксигемоглобина максимальна, т.е. 600, 577, 470 нм и т. д. (см. рис. 22.4).
Закон Ламберта-Бэра. Вкачестве количественной характеристики поглощения света часто используют также экстинкцию(Е) (на рис. 22.4 отложена по правой оси ординат):
О)
где I0-интенсивность падающего света, а I- интенсивность прошедшего света. Экстинкцию удобно использовать в связи с тем, что она прямо про-
порциональна концентрации растворенного вещества С:
(2)
где d-толщина слоя раствора, а ε – коэффициент экстинкции (величина, постоянная для каждого вещества). Линейная зависимость между экстинкцией, концентрацией и толщиной слоя раствора называется законом Ламберта-Бэра. Этот закон справедлив только для монохроматического света.
Содержание гемоглобина в крови; среднее содержание гемоглобина в эритроците
Нормальные показатели.Содержание гемоглобина в крови человека составляет в среднем 158 г/л (15.8 г/дл) у мужчин и 140 г/л (14 г/дл) у женщин. Как и практически любые биологические показатели, эта величина претерпевает определенные колебания даже у здоровых людей. Пределы колебаний определяют путем построения частотного распределениязначений для большого числа людей (рис. 22.5).
С возрастом содержание гемоглобина в крови заметно меняется. В крови новорожденного оно составляет 200 г/л. причем возможны значительные индивидуальные колебания (рис. 22.5). В течение первого года жизни содержание гемоглобина снижается примерно до 115 г/л, а затем постепенно возрастает до уровня, характерного для взрослых.
Высокое содержание гемоглобина в крови наблюдается не только у плода, но также у лиц, длительное время живущих в условиях высокогорья (с. 714). И в том и в другом случае повышение содержания гемоглобина необходимо для того, чтобы обеспечить нормальное снабжение тканей кислородом при пониженном парциальном давлении этого газа.
Уменьшение содержания гемоглобина по сравнению с нормальным уровнем называется анемией.Как правило, диагноз анемия ставят в том случае, если содержание гемоглобина меньше 130 г/л у мужчин и 120 г/л у женщин.
Измерение содержания гемоглобина.Для измерения содержания гемоглобина существует много методов, в том числе: 1) определение количества связанного О2(1 г Hb может присоединить до 1,36 мл О2); 2) анализ уровня железа в крови (содержание железа в гемоглобине составляет 0,34%); 3) колориметрия (сравнение цвета крови с цветом стандартного раствора); 4) измерение экстинкции (спектрофотометрия). При проведении рутинных определений уровня гемоглобина отдают предпочтение последнему методу, так как при использова-
6C8 ЧАСТЬ VI. ДЫХАНИЕ
нии первых двух способов необходима сложная аппаратура, а метод колориметрии неточен.
Спектрофотометрический анализ. Принцип метода состоит в определении содержания Hb в крови по экстинкции монохроматического света. Поскольку растворенный гемоглобин нестабилен, а экстинкция зависит от степени оксигенации, его необходимо предварительно перевести в стабильную форму.
Спектрофотометрические измерения содержания гемоглобина производят следующим образом. Кровь набирают в капиллярную пипетку и затем смешивают с раствором, содержащим калий железосинеродистый (K3[Fe(CN)6]), цианистый калий (KCN) и бикарбонат натрия (NaHCO3). Под действием этих веществ эритроциты разрушаются, и гемоглобин превращается в цианметгемоглобинHbCN (содержащий трехвалентное железо), способный сохраняться в течение нескольких недель. При спектрофотометрии раствор цианметгемоглобина освещают монохроматическим светом с длиной волны 546 нм и определяют экстинкцию Е. Зная коэффициент экстинкции ε и толщину слоя раствора d, можно, исходя из закона
Ламберта-Бэра [уравнение (2)], определить концентрацию раствора С непосредственно по величине экстинкции Е. Чаще предпочитают, однако, предварительно откалибровать шкалу экстинкции при помощи стандартного раствора. В настоящее время цианметгемоглобиновый метод считается наиболее точным из общепринятых способов измерения содержания гемоглобина [32].
Среднее содержание гемоглобина в эритроците.
Важным диагностическим показателем, позволяющим оценить эритропоэз и провести дифференциальную диагностику различных форм анемии, служит среднее содержание гемоглобина в одном эритроците (СГЭ) (по международной классификации-mean corpuscular hemoglobin, MCH). Эта величина отражает абсолютное количество гемоглобина, содержащееся в среднем в одном эритроците. Ее находят путем деления количества гемоглобина в определенном объеме крови на число эритроцитов в том же объеме.
Приведем пример расчета СГЭ. У здорового мужчины в 1 л крови содержится 158 г Hb и 5,1 млн ∙ 106 эритроцитов (1 л = 106 мкл). СГЭ равно отношению этих величин:
Такая же величина СГЭ характерна и для здоровых женшин:
Эритроциты с нормальным содержанием гемоглобина (26-36 пг) называют нормохромнымн. Если СГЭ патологически снижено, то эритроциты называют гипохромными, а если оно повышено – гиперхромными. Эти же термины употребляют и для обозначения различных форм анемии. Так, когда образование гемоглобина снижается в результате недостатка железа, содержание гемоглобина в расчете на эритроцит падает, и возникает гипохромная анемия. При других разновидностях анемии (например, пернициозной анемии) нарушается образование красных кровяных телец в костном мозгу, и в крови появляются деформированные эритроциты с высоким содержанием гемоглобина. В этом случае речь идет о гиперхромной анемии. После значительной кровопотери СГЭ сначала не изменяется (нормохромная анемия), а в последующем вследствие избыточной продукции эритроцитов содержание гемоглобина в них падает (гипохромная анемия).
Рекомендуемые страницы: