Процесс насыщения гемоглобина кислородом

Процесс насыщения гемоглобина кислородом thumbnail

Гемоглобин присоединяет О2 последовательно, по одной молекуле на каждый гем.

В апогемоглобине, благодаря координационной связи с белковой частью, атом железа выступает из плоскости гема в направлении гистидина F8.

Присоединение О2 к шестой координационной связи железа вызывает его перемещение в плоскость гема, за ним перемещаются гистидин F8 и полипептидная цепь, в состав которой он входит.

Происходит изменение конформации текущего протомера и связанных с ним оставшихся протомеров. При этом у протомеров возрастает сродство к кислороду, в результате каждый следующий кислород присоединяется к гемоглобину лучше предыдущего. Четвертая молекула кислорода присоединяется к гемоглобину в 300 раз легче, чем первая молекула. Обратный процесс аналогичен, чем больше О2 отдают протомеры, тем легче идет отщепление последующих молекул О2.

Кривая диссоциации кислорода для гемоглобина

Кооперативность в работе протомеров гемоглобина формирует сигмовидный характер кривой насыщения его кислородом в зависимости от парциального давления кислорода.

S–образная кривая насыщения гемоглобина кислородом имеет важное биологическое значение.

Во-первых, пологий участок S–образной кривой (выше 60 мм.рт.ст.) обеспечивает максимальное насыщение гемоглобина кислородом в легких, даже если концентрация кислорода в альвеолярном воздухе заметно снижена. Например, в альвеолярной крови при РО2=95 мм.рт.ст. гемоглобин насыщается кислородом на 97%, а при РО2=60 мм.рт.ст. – на 90%.

Во-вторых, Крутой наклон среднего участка S–образной кривой (от 10 до 40 мм.рт.ст.) обеспечивает максимальный переход кислорода от гемоглобина к тканям.

В области венозного конца капилляра при РО2 = 40 мм.рт.ст. гемоглобин насыщен кислородом на 73%. При снижении РО2 на 5 мм.рт.ст. насыщение гемоглобина кислородом уменьшается на 7%.

Аллостерическая регуляция насыщения гемоглобина кислородом

Кроме РО2 на насыщение гемоглобина кислородом влияют и другие факторы, например, рН, температура, давление, концентрация 2,3-ДФГ, РСО2.

Увеличение температуры, присоединение к гемоглобину Н+, 2,3-ДФГ, СО2 уменьшает сродство гемоглобина к кислороду, при этом кривая диссоциации оксигемоглобина сдвигается вправо и гемоглобин легче отдает кислород тканям.

Эффект Бора

Влияние рН на характер кривой диссоциации оксигемоглобина называется эффектом Бора (по имени датского физиолога Христиана Бора, впервые открывшего этот эффект).

Гемоглобин в дезоксигенерированном состоянии имеет более высокое сродство к протонам, чем оксигемоглобин. Другими словами R – форма (оксигенерированная) является более сильной кислотой, чем Т-форма (дезоксигенерированная). Поэтому когда дезоксигемоглобин в легких присоединяет кислород, происходит переход в R – форму и разрыв некоторых связей, в результате чего и высвобождаются протоны, ответственные за эффект Бора. Наоборот, при высвобождении кислорода образуется Т-структура и разорванные связи между субъединицами должны быть восстановлены, и протоны вновь присоединяются к остаткам гистидина в b – цепях. Таким образом, протонирование гемоглобина снижает его сродство к О2 и увеличивает потребление О2 в ткани.

Эффект Бора имеет важное физиологическое значение. Образующийся в тканях СО2 должен транспортироваться в легкие. Он поступает в эритроциты по градиенту напряжения. В них фермент карбоангидраза превращает его в Н2СО3, который диссоциирует на бикарбонат, ион и протон. Последний сдвигает равновесие влево в уравнении (1).

Hb + 4 O2= Hb (О2)4 + (H+)n

Где n – величина порядка 2; число зависит от целого комплекса параметров, тем самым заставляя Hb О2 отдавать свой кислород.

НСО3- пассивно продвигается через ионный канал по градиенту концентрации в сыворотку.

Продвижение НСО3- не сопровождается перемещением Н+, поскольку нет канала, позволяющего ему пройти через мембрану эритроцитов. Для сохранения ионного равновесия при выходе НСО3- из клетки, Cl- перемещаются внутрь её через тот же ионный канал. Такое двойное перемещение известно как хлоридный сдвиг (сдвиг Хамбургера).

Растворенный НСО3- движется вместе с венозной кровью обратно в легкие. Здесь высвобождение протона из гемоглобина при оксигениции приводит к образованию НСО3- (по принципу Ле-Шателье).

НСО3-+ Н+= Н2СО3-,

что позволяет карбоангидразе образовать СО2.

Разрушение НСО3- в эритроците обуславливает вхождение в него НСО3- из сыворотки, так что в легких происходит обратный хлоридный сдвиг, приводящий к выведению СО2 с выдыхаемым воздухом.

Источник

Несмотря на то, что исследование кислотно-основного состояния, строго говоря, подразумевает исследование только величины pH (концентрации ионов H+), в реальности  в него также включается исследование физиологически важных газов, присутствующих в крови – O2 и CO2. Анализ газов показывает эффективность газообмена по величинам парциальных давлений – pO2 и pCO2.

Через альвеолярную мембрану молекулы любых газов перемещаются диффузно по градиенту концентрации. Молекулы O2 атмосферного воздуха поступают из альвеол в кровь, а молекулы CO2 из крови в альвеолы до тех пор пока их парциальные давления не выровняются.

Величина парциального давления – это процентная доля газа в общем объеме.

 Углекислый газ

Концентрация СО2 в альволярном воздухе столь низка, а в крови столь высока, что диффузия этого газа в альвеолы чрезвычайно эффективна и скорость его удаления зависит только от альвеолярной вентиляции – общего объема воздуха, транспортируемого в минуту между альвеолами и атмосферой (“скорости выдувания”).

Следовательно,

  • при усиленной вентиляции легких углекислый газ быстро выводится, и показатель pCO2в крови снижается. Это означает потерю организмом угольной кислоты (ионов H+), что является причиной защелачивания крови – алкалоза, называемого дыхательным или респираторным.
  • при недостаточной альвеолярной вентиляции величина рСО2 повышается, что свидетельствует о недостаточном его удалении и накоплении H2CO3. Иными словами, повышение в крови показателя рСО2  является причиной дыхательного ацидоза.

Увеличенное pCO2 (гиперкапния) всегда свидетельствует о снижении альвеолярной вентиляции.

Кислород

Вопросы, связанные с оксигенацией крови и транспортом кислорода более сложны. Связано это с тем, что в виде свободных (растворенных) молекул O2 находится лишь небольшая доля общего кислорода крови. Основная часть кислорода связана с гемоглобином (оксигемоглобин) и истинное содержание кислорода зависит от двух дополнительных параметров – концентрации Hb и насыщения (сатурации) гемоглобина кислородом.

Оксигемоглобин

Оксигемоглобин (HbО2) – процентное содержание в крови, является отношением фракции оксигемоглобина (HbО2) к сумме всех фракций (общему гемоглобину).

Насыщение гемоглобина кислородом

Насыщение гемоглобина кислородом (HbOSAT, SО2), представляет собой отношение фракции оксигенированного гемоглобина к тому количеству гемоглобина в крови, который способен транспортировать О2. 

Отличия между двумя показателями HbО2 и HbOSAT заключаются в том, что у пациентов возможно наличие в крови такой формы гемоглобина, которая не способна акцептировать О2 (Hb‑CO, metHb, сульфоHb). Но так как большинство больных не имеют в крови повышенного содержания этих форм гемоглобина, значения HbО2 и SО2 обычно очень близки. 

Например, если при отравлении нитритами количество metHb составляет 15%, тогда величина HbО2 никогда не сможет превысить 85%, но насыщение (HbOsat) может быть различно – от максимума (HbOsat=95-98%) при полном насыщении до низких величин при отсутствии кислорода.

Показатель насыщения кислородом показывает процент доступных мест связывания на гемоглобине.

насыыщение гемоглобина

Иллюстрация понятий оксигемоглобина (HbO2) и насыщения гемоглобина (HbO2sat)
Парциальное давление кислорода (pO2) 

Парциальное давление O2 выступает как движущая сила, приводящая к насыщению гемоглобина кислородом. И хотя, как правило, чем выше pO2 тем выше HbOsat, эта зависимость не является линейной.

кривая диссоциации гемоглобина

Кривая диссоциации гемоглобина в норме и
при изменении pH и концентрации 2,3-дифосфоглицерата

В центральной части кривой насыщения (или кривой диссоциации) гемоглобина малейшие сдвиги pO2 приводят к резким изменениям насыщения гемоглобина. И наоборот, при высоком pO2 (80-90-100 мм рт.ст) кривая становится плоской, насыщение гемоглобина мало зависит от колебаний кислорода в плазме.

Сдвиг влево происходит при защелачивании и снижении концентрации 2,3-дифосфоглицерата и сигнализирует об увеличении сродства кислорода  к гемоглобину (в легких). Сдвиг вправо – это снижение сродства кислорода к гемоглобину (в тканях), обеспечивается закислением среды и накоплением 2,3-дифосфоглицерата.

Показатель pO2 не отражает содержание кислорода в цельной крови! Но хотя pO2 и не показывает общее количество кислорода в крови, но это общее количество зависит от pO2 через показатель сатурации гемоглобина.

В свою очередь имеются факторы, влияющие на величину pO2:

1. Альвеолярная вентиляция. Хотя она влияет как на pO2 так и на pCO2, но доля кислорода в альвеолах при гипервентиляции может лишь слегка увеличиться, приближаясь к pO2 атмосферного воздуха, при гиповентиляции – стремительно падает, вытесняясь поступающим из крови CO2. В то же время доля CO2 в альвеолах быстро снижается при усиленной вентиляции.

2. Вентиляционно-перфузионное соотношение, определяется тем, что

  • не вся кровь, притекающая к легким, соприкасается с хорошо вентилируемыми альвеолами (спадение альвеол, уплотнение стенки).
  • не все хорошо вентилируемые альвеолы получают достаточно крови (правожелудочковая сердечная недостаточность).

3. Концентрация кислорода во вдыхаемом воздухе (FiO2, fraction of inspired oxygen).

В таблице приведены сравнительные величины концентрации кислорода и углекислого газа в воздухе, крови и тканях.
Необходимо обратить внимание на перепады концентраций кислорода и углекислого газа в крови и альвеолярном воздухе. Важной особенностью является то, что pO2 в альвеолярном воздухе и артериальной крови очень близки, т.е. в обычных условиях глубоким и/или частым дыханием невозможно повысить потребление кислорода и насыщение им гемоглобина. В то же время разность концентраций pCO2 в венозной крови и альвеолярном воздухе позволяет эффективно его удалять при частом дыхании.

  pO2, мм рт.ст. pCO2, мм рт.ст
Вдыхаемый воздух159 0,23 
Альвеолярный воздух 105-110 40 
Артериальная кровь 83-108 35-45 
Ткани 10-20 50-60 
Венозная кровь 35-49 46-51 
Выдыхаемый воздух 11632 

Источник

Уровень кислорода в крови при Covid-19 уменьшается потому, что легочные альвеолы воспаляются, заполняются жидкостью и утрачивают способность брать его из воздуха. Такое явление называется гипоксемией и сопровождается характерными признаками – одышкой, головокружением, побледнением/посинением кожных покровов, учащенным дыханием и пульсом.

Если показатели падают до критических значений – ниже 93% – необходима экстренная госпитализация и принудительная подача кислорода.

Что это такое

Сатурация в медицине – это насыщение крови кислородом, измеряемое в процентах и обозначаемое как SpO2. Ее значения очень важны, поскольку указывают на проблемы с дыхательной и сердечной деятельностью еще до появления первых признаков дефицита кислорода.

В организме происходит непрерывный газообмен между клетками крови и тканями. Кровь насыщается кислородом в легких и переносит его к тканям. Последние в процессе обмена отдают отходы, образовавшиеся в результате дыхания и «меняют» углекислый газ на кислород.

Углекислый газ, в свою очередь, транспортируется кровью обратно в легкие, из которых выходит при выдохе наружу. В это же время в эритроцитах освобождается пространство, сразу занимаемое кислородом. Таков круговорот газов, представляющий собой дыхательный цикл.

Газообмен осуществляется благодаря проникновению газов в молекулы гемоглобина, связываясь с ним через молекулу железа в его составе. Гемоглобин формирует эритроциты, придающие крови характерный красный цвет.

Гемоглобин с кислородом внутри называется оксигемоглобин – именно его цифровое значение отражает уровень сатурации и насыщенность кислородом.

Сатурация измеряется специальным прибором – пульсоксиметром, включая его разновидности для домашнего использования, и фитнес-браслетами. Однако последние могут показывать менее точные цифры.

При низких значениях насыщенности крови кислородом подключается аппарат искусственной вентиляции легких – ИВЛ. Вначале вентиляция выполняется посредством ингаляции через маску или носовой катетер, если этого недостаточно, проводится интубация трахеи с установкой эндотрахеальной трубки или процедура ЭКМО – экстракорпоральной мембранной оксигенации.

Цель измерений

Смысл действий медперсонала по замеру сатурации состоит в предупреждении дыхательной недостаточности. После попадания коронавируса в легкие его молекулы повреждают альвеолы, ответственные за газообмен с легочными капиллярами.

Ткань легких начинает отекать, что приводит к развитию воспалительного процесса – пневмонии. Из-за отека в кровь перестает поступать необходимый объем кислорода. Кроме того, согласно результатам последних исследований, обнаружилась способность Covid-19 нарушать структуру гемоглобина: новый коронавирусный штамм лишает его способности доставлять кислород к клеткам.

Пневмония при новом Sars-CoV-2 может достаточно долго протекать в скрытой, латентной форме и никак не проявляться. У некоторых больных бывает лишь слабость и недомогание, температура при этом не поднимается, одышка и кашель либо отсутствуют, либо выражены слабо.

Затем на фоне почти полного здоровья состояние резко ухудшается, болезнь стремительно прогрессирует, и выявляют ее уже на критическом этапе. Поэтому сатурация при коронавирусе – это один из ранних и наиболее достоверных симптомов риска развития дыхательной недостаточности. Он объективно указывает на то, нуждается ли больной в проведении интенсивной терапии и незамедлительной подаче кислорода.

В зависимости от показателя сатурации осуществляется выбор методики поддержания функции дыхательной системы. Если снижение незначительное, достаточно подаваемого воздуха через маску или катетер, и человек дышит сам.

В случае резкого падения концентрации кислорода в крови пациента подключают к аппарату ИВЛ. При тяжелом течении коронавирусной инфекции применяется метод ЭКМО, и к больному подсоединяют мембранный оксигенатор. Производится забор венозной либо артериальной крови, которая очищается, насыщается кислородом и возвращается в кровеносное русло.

Какая должна быть сатурация в норме

Норма у взрослых – 95-98%, но при коронавирусе она может снижаться до 91-92% и ниже. При тяжелых формах дыхательной недостаточности возможно падение сатурации до 70% и меньше. Однако в случае имеющихся сопутствующих болезней бронхолегочной системы организм несколько по-другому реагирует на нехватку кислорода, и ее признаки появляются уже при снижении сатурации до 88%.

Как проявляется недостаток оксигена

При уменьшении показателей сатурации у взрослого человека возникает одышка, он дышит часто и поверхностно, делает больше 20 вдохов и выдохов в минуту. Сердце бьется быстро, кожа бледнеет, на ней может появляться синюшный оттенок. Многие пациенты жалуются на внезапную слабость, быструю усталость даже после незначительной физической активности.

Небольшое снижение кислорода в крови проявляется апатичностью, головной болью, головокружением и сонливостью. Пациент, у которого развивается гипоксемия, не испытывает интереса к тому, что происходит вокруг, с трудом концентрирует внимание, у него может ухудшаться память. У некоторых в буквальном смысле наблюдается «помрачение рассудка».

Измерительные приборы

В легких и среднетяжелых случаях измерения проводят пульсоксиметром – прибором, напоминающим обычную прищепку, надеваемую на палец, мочку уха или другую часть тела. С одной стороны пульсоксиметра расположен экран, где высвечиваются показатели сатурации.

Принцип работы аппарата основывается на свойствах веществ поглощать световые волны разной длины. В данном случае таким веществом является гемоглобин и его способность поглощать свет в зависимости от насыщенности кислородом.

В реанимационных отделениях измеряют не только уровень сатурации, но и высчитывают индекс оксигенации, или респираторный индекс. С этой целью сначала проводят спирометрию для проверки функционирования легких, давая пациенту подышать в трубочку.

Аппарат считывает информацию в конкретный момент времени, но некоторые модели способны также сохранять данные и строить графики.

Пониженные значения индекса оксигенации – это самый точный критерий, указывающий на развитие грозного осложнения коронавирусной пневмонии – острого респираторного дистресс-синдрома (ОРДС).

Чтобы решить, как и какие процедуры делать больному, требуется комплексная оценка его состояния. Поэтому проводится детальное обследование, в которое входят общий анализ крови, исследование газового состава и кислотно-щелочного баланса, анализ на содержание электролитов. По результатам осуществляется выбор метода подачи O2, и решается вопрос о подключении к ИВЛ.

Как подается кислород

Надо сразу сказать, что обогащением крови кислородом нельзя вылечить или убить коронавирус. Повышение сатурации является методом симптоматической терапии, позволяющим нормализовать работу органов дыхания.

Более того, при легком протекании Ковида проводить кислородонасыщающие мероприятия нецелесообразно, и их делают только тяжелым больным или тем, кто находится в критическом состоянии.

Для стимуляции и поддержания дыхательной деятельности применяются:

  • стандартная подача кислорода через маску или назальную канюлю (ставится в нос);
  • кислородотерапия в прон-позиции, когда больной лежит на животе;
  • интубация с введением трубки в трахею и подключение к ИВЛ.

Стоит отметить, что кислородотерапия в прон-позиции весьма активно и успешно применяется в отделениях реанимации. Когда человек лежит на животе, меняются вентиляционно-перкуссионные соотношения в легких – проще говоря, альвеолы дышат свободнее за счет снижения давления воспалительной жидкости.

В итоге лучше вентилируются те области легких, в которые до этого поступало недостаточно кислорода, так как больной лежал на спине. Кроме того, в процесс дыхания вовлекается большая площадь легких, и несколько уменьшается отрицательное влияние прибора ИВЛ.

Другими словами, прон-позиция способствует улучшению перехода кислорода в кровь из альвеол, повышая тем самым оксигенацию. Такой несложный метод позволяет лечить многих людей с тяжелыми формами пневмонии.

К ИВЛ подключаются только те больные, которым не помогло дыхание через маску или назальную канюлю и терапия в прон-позиции.

В реанимационных палатах способ подачи кислорода выбирается в зависимости от того, сколько процентов сатурации покажет пульсоксиметр. При ее уровне от 80 до 93% используется маска, значение ниже 75% является показанием к подключению ИВЛ с введением эндотрахеальной трубки или проведением трахеостомии.

Гелий – облегчение для легких

Насытить кровь кислородом можно, смешав его с гелием. Такая методика позволяет добиться:

  • ускорения нормализации газового состава;
  • восстановления кислотности;
  • предотвращения тяжелых осложнений;
  • улучшения кровоснабжения и микроциркуляции в тканях легких.

Смесь кислорода с гелием предварительно нагревают до t=92° и подают ее пациенту. Процедура длится около 15 минут. Сторонники такого метода констатируют, что вдыхание «лечебного пара» не доставляет дискомфорта, а ощущения напоминают пребывание в сауне.

На данном этапе кислородно-гелиевая методика проходит клинические испытания в институте им. Склифосовского.

Нужно отметить, что в аппаратах ИВЛ используется чистый кислород без примесей. Однако особого смысла в его чистоте нет, поскольку он почти не доходит до легочных альвеол. Кроме того, плотность кислорода превышает плотность воздуха – 1.43 против 1.2 кг/м 3, а это означает, что дышать им достаточно сложно.

Совсем другое дело, когда кислород сочетается с гелием. В составе воздуха, которым мы дышим, 78% азота и всего 21% кислорода, азот здесь является своеобразным «растворителем» данного соединения, так как его плотность меньше по сравнению с кислородом. Плотность гелия ниже плотности азота в 6.5 раз, поэтому в соединении с кислородом он служит его настоящим «разжижителем».

С другой стороны, гелий пока нельзя назвать панацеей. Его эффективность при лечении пациентов с Covid-19 еще не нашла клинического подтверждения, хотя и отмечается некий положительный эффект. Значимым фактором является и его дороговизна – стоимость гелия в 2020 г. выросла вдвое и составляет порядка 2 тыс. руб за м 3. Но главное даже не это, а отсутствие специальных установок, более сложных и дорогостоящих по сравнению с аппаратами ИВЛ, а также квалифицированных специалистов для работы с ними.

Ранее гелиотерапия применялась в специализированных медцентрах. Возможности для ее скорого внедрения имеются у московского института Склифосовского, а когда эта практика дойдет до остальных клиник, тем более в провинциальных городах, зависит от высшего руководства здравоохранения.

Читайте также: Выпадение волос после коронавируса: чем личить, что делать, как остановить при ковиде у женщин?

Источник apkhleb.ru

Пишу о том, что мне интересно. Чтобы не пропустить что нибудь важное, рекомендую подписаться на 9111.ру

Источник