Роли эритроцитов и гемоглобина в обеспечении работоспособности
2. Физиология эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.
Важнейшими функциями эритроцита являются:
1) дыхательная;
2) питательная;
3) ферментативная;
4) защитная;
5) буферная.
Гемоглобин участвует в иммунологических реакциях.
Дыхательная функция связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов.
Питательная функция связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям.
Ферментативная функция обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы и др.
Защитная функция осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза.
Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.
Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 ? 1012/л, а у женщин – 3,7–4,7 ? 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).
Эритроциты обладают физиологическими и физико-химическими свойствами:
1) пластичностью;
2) осмотической стойкостью;
3) наличием креаторных связей;
4) способностью к оседанию;
5) агрегацией;
6) деструкцией.
Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.
Осмотическое давление в клетках немного выше, чем в плазме, за счет внутриклеточной концентрации белков. Также на осмотическое давление оказывает влияние и минеральный состав (в эритроцитах преобладает калий и снижено содержание ионов Na). За счет наличия осмотического давления обеспечивается нормальный тургор.
В настоящее время установлено, что эритроциты являются идеальным переносчиками, поскольку обладают креаторными связями, транспортируют различные вещества и осуществляют межклеточное взаимодействие.
Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.
При уменьшении скорости кровотока и увеличении вязкости наблюдается агрегация. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.
Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:
1) постепенным уменьшением содержания липидов и воды в мембране;
2) увеличенным выходом ионов K и Na;
3) преобладанием метаболических сдвигов;
4) ухудшением способности к восстановлению метгемоглобина в гемоглобин;
5) понижением осмотической стойкости, приводящей к гемолизу.
Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.
Данный текст является ознакомительным фрагментом.
Похожие главы из других книг:
39. Изменение количественного и качественного состава эритроцитов
Увеличение количества эритроцитов (эритроцитоз) является симптомом различных заболеваний или патологических состояний. Различают эритроцитоз абсолютный и относительный.Абсолютный эритроцитоз
2. Антигенная система эритроцитов, иммунный конфликт
Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации.Антитела – это иммуноглобулины, образующиеся при введении антигена
54. Физиологическая структура эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин.Образуются в красном костном мозге, а разрушаются в селезенке.В зависимости от размеров делятся на нормоциты, микроциты и макроциты.Эритроцит
2. Методика подсчета эритроцитов, гемоглобина. Нормативы, патологические отклонения, диагностическое значение
Подсчет количества эритроцитов с помощью камеры Бюргера с сеткой Горяева. Для подсчета эритроцитов необходимы камера Бюргера с сеткой Горяева, исследуемая
Изменение количественного и качественного состава эритроцитов
Процессы эритропоэза (продукции эритроцитов) и эритродиереза (разрушения эритроцитов) находятся в организме в состоянии равновесия.Нарушение взаимоотношения этих процессов может привести к увеличению или
Количество эритроцитов
Норма:• количество эритроцитов у мужчин – 4,0–5,5 х 1012/л;• количество эритроцитов у женщин – 3,7–4,7 х 1012/л;• количество эритроцитов у новорожденных – 3,9–5,5 х 1012/л;• количество эритроцитов у детей 3-месячного возраста – 2,7–4,9 х 1012/л;• количество
Скорость оседания эритроцитов
Скорость оседания эритроцитов—неспецифический индикатор состояния организма. Определяется при заборе капиллярной крови. Скорость оседания эритроцитов в норме меняется в зависимости от возраста и пола.Норма:• СОЭ у новорожденных – 0–2
Антигены эритроцитов, их классификация, значение антигенов эритроцитов в патогенезе изоиммунизации
На современном этапе развития иммуногематологии известно более 250 антигенов эритроцитов, которые принято распределять в 29 генетически независимых систем. Каждая
Методы определения эритроцитов плода в кровотоке матери
Резус-отрицательные женщины имеют риск сенсибилизации независимо от того, определяются или нет у них в крови эритроциты плода. Назначение тестов по определению фетальных эритроцитов состоит в определении
Скорость оседания эритроцитов
Скорость оседания эритроцитов (СОЭ) – неспецифический лабораторный показатель крови, отражающий способность эритроцитов в лишенной возможности свертывания[91] крови оседать под действием силы тяжести.Скорость, с которой происходит
Скорость оседания эритроцитов (СОЭ)
Скорость оседания эритроцитов у здоровых мужчин составляет 2–10 мм в час, у женщин – 2–15 мм в час. СОЭ зависит от многих факторов: количества, объема, формы и величины заряда эритроцитов, их способности к агрегации, белкового состава
Физиология сна
Сон – физиологическое состояние, которое характеризуется потерей активных психических связей субъекта с окружающим его миром. Сон является жизненно необходимым для высших животных и человека. Длительное время считали, что сон представляет собой отдых,
Скорость оседания эритроцитов (СОЭ)
Этот показатель является одним из важных и наиболее распространенных лабораторных исследований крови. Он определяет, как быстро оседают эритроциты в пробирке, отделяясь от плазмы крови. У женщин норма СОЭ немного выше, чем у мужчин,
Физиология сна
Согласно определению специалистов, сон — это естественное физиологическое состояние человека, характеризующееся цикличностью, периодичностью, относительным уменьшением уровня физической и психической активности, отсутствием сознания и снижением
Скорость оседания эритроцитов (СОЭ)
По всей видимости, СОЭ, или скорость оседания эритроцитов, может считаться показателем, лучше всего известным широкой публике. Точно так же, как тот факт, что повышение СОЭ является неблагоприятным признаком.Скорость оседания
8.2. Физиология
Новости эти я знал с детства: одна страна угрожает другой, кто-то кого-то предал, экономика переживает упадок, Израиль и Палестина за протёкшие пятьдесят лет так и не пришли к соглашению, ещё один взрыв, ещё один ураган оставил тысячи людей без крова.
Паоло
Источник
ЛЕКЦИЯ № 16. Физиология компонентов крови
1. Плазма крови, ее состав
Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8—10 % из сухого остатка. В состав сухого остатка входят неорганические и органические вещества. К органическим относятся белки, азотосодержащие вещества небелковой природы, безазотистые органические компоненты, ферменты.
Белки составляют 7–8 % от сухого остатка (что составляет 67–75 г/л) и выполняют ряд функций. Они отличаются по строению, молекулярной массе, содержанию различных веществ. При увеличении концентрации белков возникает гиперпротеинемия, при уменьшении – гипопротеинемия, при появлении патологических белков – парапротеинемия, при изменении их соотношения – диспротеинемия. В норме в плазме присутствуют альбумины и глобулины. Их соотношение определяется белковым коэффициентом, который равняется 1,5–2,0.
Альбумины – мелкодисперсные белки, молекулярная масса которых 70 000—80 000 Д. В плазме их содержится около 50–60 %, что составляет 37–41 г/л. В организме они выполняются следующие функции:
1) являются депо аминокислот;
2) обеспечивают суспензионное свойство крови, поскольку являются гидрофильными белками и удерживают воду;
3) участвуют в поддержании коллоидных свойств за счет способности удерживать воду в кровеносном русле;
4) транспортируют гормоны, неэтерефицированные жирные кислоты, неорганические вещества и т. д.
При недостатке альбуминов возникает отек тканей (вплоть до гибели организма).
Глобулины – крупнодисперсные молекулы, молекулярная масса которых более 100 000 Д. Их концентрация колеблется в пределах 30–35 %, что составляет около 30–34 г/л. При электрофорезе глобулины распадаются на несколько видов:
1) ?1– глобулины;
2) ?2-глобулины;
3) ?-глобулины;
4) ?-глобулины.
За счет такого строения глобулины выполняют различные функции:
1) защитную;
2) транспортную;
3) патологическую.
Защитная функция связана с наличием иммуноглобулинов – антител, способных связывать антигены. Также они входят в состав защитных систем организма, такие как – системы пропердина и комплемента, обеспечивая неспецифическую резистентность организма. Участвуют в процессах свертывания крови за счет наличия фибриногена, занимающего промежуточное положение между ?-глобулинами и ?-глобулинами, являющимися источником фибриновых нитей. Образуют в организме систему фибринолиза, основным компонентом которой является плазминоген.
Транспортная функция связана с переносом металлов с помощью гаптоглобина и церулоплазмина. Гаптоглобин относится к ?2-глобулинам и образует комплекс с трансферрином, сохраняющим для организма железо. Церулоплазмин является ?2-глобулином, который способен соединять медь.
Патологические глобулины образуются в ходе воспалительных реакций, поэтому в норме не обнаруживаются. К ним относятся интерферон (образуется при внедрении вирусов), С-реактивный белок, или белок острой фазы (является ?-глобулином и присутствует в плазме при тяжелых, хронических заболеваниях).
Таким образом, белки обеспечивают физико-химические свойства крови и выполняют защитную функцию.
В плазме также содержатся аминокислоты, мочевина, мочевая кислота, креатинин;
Их содержание невелико, поэтому они обозначаются как остаточный азот крови. В норме он составляет примерно 14,3—28,6 %. Уровень остаточного азота поддерживается за счет наличия белков в пище, выделительной функции почек и интенсивности белкового обмена.
Органические вещества в плазме представлены в виде продуктов обмена углеводов и липидов. Компоненты обмена углеводов:
1) глюкоза, содержание которой в норме составляет 4,44– 6,66 ммоль/л в артериальной крови и 3,33—5,55 ммоль/л в венозной и зависит от количества углеводов в пище, состояния эндокринной системы;
2) молочная кислота, содержание которой резко повышается при критических состояниях. В норме ее содержание равно 1–1,1 ммоль/л;
3) пировиноградная кислота (образуется при утилизации углеводов, в норме содержится приблизительно 80–85 ммоль/л). Продуктом липидного метаболизма является холестерин, участвующий в синтезе гормонов, желчных кислот, построении клеточной мембраны, выполняющий энергетическую функцию. В свободном виде он представлен в форме липопротеидов – комплекса белков и липидов. Выделяют пять групп:
1) хиломикроны (участвуют в транспорте триацилглицеридов экзогенного происхождения, образуются в эндоплазматической сети энтероцитов);
2) липопротеиды очень низкой плотности (переносят триацилглицериды эндогенного происхождения);
3) липопротеиды низкой плотности (доставляют холестерин к клеткам и тканям);
4) липопротеиды высокой плотности (образуют комплексы с холестерином и фосфолипидами).
Биологически активные вещества и ферменты относятся к группе веществ, обладающих высокой энзимной активностью, на их долю приходится 0,1 % сухого остатка.
Неорганические вещества являются электролитами, т. е. анионами и катионами. Они выполняют ряд функций:
1) регулируют осмотическое давление;
2) поддерживают pH крови;
3) участвуют в возбуждении клеточной мембраны.
У каждого элемента имеются свои функции:
1) йод необходим для синтеза гормонов щитовидной железы;
2) железо входит в состав гемоглобина;
3) медь катализирует эритропоэз.
Осмотическое давление крови обеспечивается за счет концентрации в крови осмотически активных веществ, т. е. это разность давлений между электролитами и неэлектролитами.
Осмотическое давление относится к жестким константам, его величина 7,3–8,1 атм. Электролиты создают до 90–96 % всей величины осмотического давления, из них 60 % – хлорид натрия, так как электролиты имеют низкую молекулярную массу и создают высокую молекулярную концентрацию. Неэлектролиты составляют 4—10 % величины осмотического давления и обладают высокой молекулярной массой, поэтому создают низкую осмотическую концентрацию. К ним относятся глюкоза, липиды, белки плазмы крови. Осмотическое давление, создаваемое белками, называется онкотическим. С его помощью форменные элементы поддерживаются во взвешенном состоянии в кровеносном русле. Для поддержания нормальной жизнедеятельности необходимо, чтобы величина осмотического давления всегда была в пределах допустимой нормы.
2. Физиология эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров делятся на нормоциты, микроциты и макроциты. Примерно 85 % всех клеток имеет форму двояковогнутого диска или линзы с диаметром 7,2–7,5 мкм. Такая структура обусловлена наличием в цитоскелете белка спектрина и оптимальным соотношением холестерина и лецитина. Благодаря данной форме эритроцит способен переносить дыхательные газы – кислород и углекислый газ.
Важнейшими функциями эритроцита являются:
1) дыхательная;
2) питательная;
3) ферментативная;
4) защитная;
5) буферная.
Гемоглобин участвует в иммунологических реакциях.
Дыхательная функция связана с наличием гемоглобина и бикарбоната калия, за счет которых осуществляется перенос дыхательных газов.
Питательная функция связана со способностью мембраны клеток адсорбировать аминокислоты и липиды, которые с током крови транспортируются от кишечника к тканям.
Ферментативная функция обусловлена присутствием на мембране карбоангидразы, метгемоглобинредуктазы, глютатионредуктазы, пероксидазы, истинной холинэстеразы и др.
Защитная функция осуществляется в результате оседания токсинов микробов и антител, а также за счет присутствия факторов свертывания крови и фибринолиза.
Поскольку эритроциты содержат антигены, то их используют в иммунологических реакциях для выявления антител в крови.
Эритроциты являются самыми многочисленными форменными элементами крови. Так, у мужчин в норме содержится 4,5–5,5 ? 1012/л, а у женщин – 3,7–4,7 ? 1012/л. Однако количество форменных элементов крови изменчиво (их увеличение называется эритроцитозом, а при уменьшение – эритропенией).
Эритроциты обладают физиологическими и физико-химическими свойствами:
1) пластичностью;
2) осмотической стойкостью;
3) наличием креаторных связей;
4) способностью к оседанию;
5) агрегацией;
6) деструкцией.
Пластичность во многом обусловлена строением цитоскелета, в котором очень важным является соотношение фосфолипидов и холестерина. Это соотношение выражается в виде липолитического коэффициента и в норме составляет 0,9. Пластичность эритроцитов – способность к обратимой деформации при прохождении через узкие капилляры и микропоры. При снижении количества холестерина в мембране наблюдается снижение стойкости эритроцитов.
Осмотическое давление в клетках немного выше, чем в плазме, за счет внутриклеточной концентрации белков. Также на осмотическое давление оказывает влияние и минеральный состав (в эритроцитах преобладает калий и снижено содержание ионов Na). За счет наличия осмотического давления обеспечивается нормальный тургор.
В настоящее время установлено, что эритроциты являются идеальным переносчиками, поскольку обладают креаторными связями, транспортируют различные вещества и осуществляют межклеточное взаимодействие.
Способность к оседанию обусловлена удельным весом клеток, который выше, чем все плазмы крови. В норме она невысока и связана с наличием белков альбуминовой фракции, которые способны удерживать гидратную оболочку эритроцитов. Глобулины являются лиофобными коллоидами, которые препятствуют образованию гидратной оболочки. Соотношение альбуминовой и глобулиновой фракций крови (белковый коэффициент) определяет скорость оседания эритроцитов. В норме он составляет 1,5–1,7.
При уменьшении скорости кровотока и увеличении вязкости наблюдается агрегация. При быстрой агрегации образуются «монетные столбики» – ложные агрегаты, которые распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой. При длительном нарушении кровотока появляются истинные агреганты, вызывающие образование микротромба.
Деструкция (разрушение эритроцитов) происходит через 120 дней в результате физиологического старения. Оно характеризуется:
1) постепенным уменьшением содержания липидов и воды в мембране;
2) увеличенным выходом ионов K и Na;
3) преобладанием метаболических сдвигов;
4) ухудшением способности к восстановлению метгемоглобина в гемоглобин;
5) понижением осмотической стойкости, приводящей к гемолизу.
Стареющие эритроциты за счет понижения способности к деформации застревают в миллипоровых фильтрах селезенки, где поглощаются фагоцитами. Около 10 % клеток подвергаются разрушению в сосудистом русле.
3. Виды гемоглобина и его значение
Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина.
Гемоглобин является сложным белком, который относится к классу хромопротеинов и состоит из двух компонентов:
1) железосодержащего гема – 4 %;
2) белка глобина – 96 %.
Гем является комплексным соединением порфирина с железом. Это соединение довольно неустойчивое и легко превращается либо в гематин, либо в гемин. Строение гема идентично для гемоглобина всех видов животных. Отличия связаны со свойствами белкового компонента, который представлен двумя парами полипептидных цепей. Различают HbA, HbF, HbP формы гемоглобина.
В крови взрослого человека содержится до 95–98 % гемоглобина HbA. Его молекула включает в себя 2 ?– и 2 ?-полипептидные цепи. Фетальный гемоглобин в норме встречается только у новорожденных. Кроме нормальных типов гемоглобина, существуют и аномальные, которые вырабатываются под влиянием генных мутаций на уровне структурных и регуляторных генов.
Внутри эритроцита молекулы гемоглобина распространяются по-разному. Вблизи мембраны они лежат к ней перпендикулярно, что улучшает взаимодействие гемоглобина с кислородом. В центре клетки они лежат более хаотично. У мужчин в норме содержание гемоглобина примерно 130–160 г/л, а у женщин – 120–140 г/л.
Выделяют четыре формы гемоглобина:
1) оксигемоглобин;
2) метгемоглобин;
3) карбоксигемоглобин;
4) миоглобин.
Оксигемоглобин содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам. При воздействии окислителей (перекисей, нитритов и т. д.) происходит переход железа из двухвалентного в трехвалентное состояние, за счет чего образуется метгемоглобин, который не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт. Карбоксигемоглобин образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа. Миоглобин по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц.
Гемоглобин выполняет дыхательную и буферную функции. 1 моль гемоглобина способен связать 4 моля кислорода, а 1 г – 1,345 мл газа. Кислородная емкость крови – максимальное количество кислорода, которое может находиться в 100 мл крови. При выполнении дыхательной функции молекула гемоглобина изменяется в размерах. Соотношение между гемоглобином и оксигемоглобином зависит от степени парциального давления в крови. Буферная функция связана с регуляцией pH крови.
4. Физиология лейкоцитов
Лейкоциты – ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней для лимфоцитов. Количество лейкоцитов в норме у мужчин и женщин одинаково и составляет 4–9 ? 109/л. Однако уровень клеток в крови непостоянен и подвержен суточными и сезонным колебаниям в соответствии с изменением интенсивности обменных процессов.
Лейкоциты делятся на две группы: гранулоциты (зернистые) и агранулоциты.
Среди гранулоцитов в периферической крови встречаются:
1) нейтрофилы – 46–76 %;
2) эозинофилы – 1–5 %;
3) базофилы – 0–1 %.
В группе незернистых клеток выделяют:
1) моноциты – 2—10 %;
2) лимфоциты – 18–40 %.
Процентное содержание лейкоцитов в периферической крови называется лейкоцитарной формулой, сдвиги которой в разные стороны свидетельствуют о патологических процессах, протекающих в организме. Различают сдвиг вправо – понижение функции красного костного мозга, сопровождающееся увеличением количества старых форм нейтрофильных лейкоцитов. Сдвиг влево является следствием усиления функций красного костного мозга, в крови увеличивается количество молодых форм лейкоцитов. В норме соотношение между молодыми и старыми формами лейкоцитов составляет 0,065 и называется индексом регенерации. За счет наличия ряда физиологических особенностей лейкоциты способны выполнять множество функций. Важнейшими из свойств являются амебовидная подвижность, миграция (способность проникать через стенку неповрежденных сосудов), фагоцитоз.
Лейкоциты выполняют в организме защитную, деструктивную, регенеративную, ферментативную функции.
Защитное свойство связано с бактерицидным и антитоксическим действием агранулоцитов, участием в процессах свертывания крови и фибринолиза.
Деструктивное действие заключается в фагоцитозе отмирающих клеток.
Регенеративная активность способствует заживлению ран.
Ферментативная роль связана с наличием ряда ферментов.
Иммунитет – способность организма защищаться от генетически чужеродных веществ и тел. В зависимости от происхождения может быть наследственным и приобретенным. Он основан на выработке антител на действие антигенов. Выделяют клеточное и гуморальное звенья иммунитета. Клеточный иммунитет обеспечивается активностью Т-лимфоцитов, а гуморальный – В-лимфоцитов.
5. Физиология тромбоцитов
Тромбоциты – безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 ? 109/л. Эти клетки образуются в красном костном мозге путем отшнуровывания от мегакариоцитов.
Тромбоцит содержит две зоны: гранулу (центр, в котором находятся гликоген, факторы свертывания крови и т. д.) и гиаломер (периферическую часть, состоящую из эндоплазматического ретикулума и ионов Ca).
Мембрана построена из бислоя и богата рецепторами. Рецепторы по функции делятся на специфические и интегрированные. Специфические способны взаимодействовать с различными веществами, за счет чего запускаются механизмы, аналогичные действию гормонов. Интегрированные обеспечивают взаимодействие между тромбоцитами и эндотелиоцитами.
Для тромбоцитов характерны следующие свойства:
1) амебовидная подвижность;
2) быстрая разрушаемость;
3) способность к фагоцитозу;
4) способность к адгезии;
5) способность к агрегации.
Тромбоциты выполняют трофическую и динамическую функции и осуществляют регуляцию сосудистого тонуса и принимают участие в процессах свертывания крови.
Трофическая функция заключается в обеспечении сосудистой стенки питательными веществами, за счет которых сосуды становятся более упругими.
Регуляция сосудистого тонуса достигается благодаря наличию биологического вещества – серотонина, вызывающего сокращения гладкомышечных клеток. Трамбоксан А2 (производный арахидоновой кислоты) обеспечивает наступление сосудосуживающего эффекта за счет снижения сосудистого тонуса.
Тромбоцит принимает активное участие в процессах свертывания крови за счет содержания в гранулах тромбоцитарных факторов, которые образуются либо в тромбоцитах, либо адсорбируются в плазме крови.
Динамическая функция заключается в процессах адгезии и агрегации тромбов. Адгезия – процесс пассивный, протекающий без затраты энергии. Тромб начинает прилипать к поверхности сосудов за счет интергиновых рецепторов к коллагену и при повреждении выделяется на поверхность к фибронектину. Агрегация происходит параллельно адгезии и протекает с затратой энергии. Поэтому главным фактором является наличие АДФ. При взаимодействии АДФ с рецепторами начинается активация J-белка на внутренней мембране, что вызывает активацию фосфолипаз А и С. Фосфолипаза а способствует образованию из арахидоновой кислоты тромбоксана А2 (агреганта). Фосфолипаза с способствует образованию иназитолтрифосфата и диацилглецерола. В результате активируется протеинкиназа С, повышается проницаемость для ионов Ca. В результате из эндоплазматического ретикулума они поступают в цитоплазму, где Ca активирует кальмодулин, который активирует кальцийзависимую протеинкиназу.
Источник