Синтез и распад гемоглобина биохимия

Синтез и распад гемоглобина биохимия thumbnail

Тема 3 (вопрос 4 и 5).

Гем состоит из иона двухвалентного железа и порфирина. В основе структуры порфиринов находится порфин. Порфин представляет собой четыре пиррольных кольца, связанных между собой метеновыми мостиками. С наибольшей скоростью гем синтезируется в костном мозге (для синтеза гемоглобина ретикулоцитами) и в печени (для образования цитохрома Р-450).

Синтез гема происходит в несколько стадий:

1. На первой стадии в митохондриях сукцинил-КоА взаимодействует с глицином с образованием δ-аминолевулиновой кислоты. Эту реакцию катализирует специфический пиридоксальзависимый фермент δ-аминолевулинатсинтаза. Фермент активируется стероидами и ингибируется по типу обратной связи конечным продуктом – гемом. Продукт реакции из матрикса митохондрий переходит в цитозоль.

2. На второй стадии, в цитозоле, происходит конденсация 2-х молекул
δ-аминолевулиновой кислоты с образованием порфобилиногена. Фермент – порфобилиногенсинтаза – ингибируется конечным продуктом.

3. Из 4-х молекул порфобилиногена синтезируется протопорфирин IX, являющийся предшественником гема.

4. Протопорфирин IX присоединяет молекулу Fe при участии феррохелатазы (гемсинтаза) и образуется гем. Источником же­леза в этой реакции является белок ферритин, который депонирует железо.

Механизм регуляции синтеза тема в неэритроидных клетках имеет определенные отличия. Так, в клетках печени, где синтез гема происходит на высоком уровне, гем является отрицательным регулятором синтеза δ-аминолевулинатсинтазы по механизму репрессии-депрессии в процессе транскрипции. Главный регуляторный эффект гема состоит в том, что синтез фермента значительно ускоряется в отсутствии гема и замедляется в его присутствии.

Синтез белковой части гемоглобина происходит на рибосомах. Цепи α и β глобина синтезируются на полисомах, образованных, как правило, пятью рибосомами. Цепь α освобождается первой, присоединяется к β-цепи, еще связанной с рибосомой и отделяет ее, образуя димер αβ. Два димера соединяются в молекулу гемоглобина α2β2.

Соединение гема с глобином может происходить или в процессе синтеза полипептидных цепей, или после окончания синтеза глобина. Синтез полипептидных цепей происходит только в присутствии гема. При низкой концентрации гема синтез глобина замедляется. Отсюда следует, что синтез гема и глобина происходит координировано и ни один из этих компонентов не образуется в избыточном или недоста­точном количестве.

                                               Катаболизм гемоглобина

Эритроциты имеют короткое время жизни (примерно 120 дней). При физиологических условиях в организме взрослого человека разрушается около 1 – 2×1011 эритроцитов в сутки. Их катаболизм происходит, главным образом, в ретикулоэндотелиальных клетках селезёнки (РЭС), лимфатических узлов, костного мозга и печени. При распаде гемоглобина образуется билирубин. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250-350 мг. Дальнейший метаболизм билирубина происходит в печени.

Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным)или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.

Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.

Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой. Реакцию катализирует УДФ-глюкуронилтрансфераза. Образующийся билирубиндиглюкуронид получил название прямого(коньюгированного) билирубина или связанного. Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.

Прямой билирубин – это нормальный компонент желчи, попадающий в кровь в незначительном количестве. Он может проходить через почечный барьер, но в крови в норме его мало, поэтому в моче обычными лабораторными методами он не определяется.

Вместе с желчью прямой билирубин выводится в тонкий кишечник. В кишечнике билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами. Освободившийся билирубин под действием кишечной микрофлоры восстанавливается с образованием сначала мезобилирубина, а затем мезобилиногена(уробилиногена). Небольшая часть уробилиногенов, всасываясь в тонком кишечнике и верхнем отделе толстого, через систему воротной вены попадает в печень, где практически полностью разрушается до дипиррольных соединений. Уробилиноген при этом в общий кровоток не поступает и в моче не определяется.

Основная часть уробилиногена поступает в толстый кишечник, где под влиянием микрофлоры подвергается дальнейшему восстановлению с образованием стеркобилиногена. Образовавшийся стеркобилиноген почти полностью выделяется с калом. На воздухе он окисляется и превращается в стеркобилин, являющийся одним из пигментов кала. Небольшая часть стеркобилиногена попадает путем всасывания через слизистую толстого кишечника в систему нижней полой вены (через геморроидальные вены), доставляется в почки и выводится с мочой (4 мг/сутки).

Источник

За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов.

Эритроциты в норме живут 90-120 дней, после чего лизируются в клетках ретикулоэндотелиальной системы – макрофагах селезенки (главным образом), купферовских клетках печени и макрофагах костного мозга. При разрушении эритроцитов в кровеносном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и также переносится в клетки РЭС селезенки, печени и костного мозга.

Синтез билирубина

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина. Высвобождаемое железо может либо запасаться в клетке в комплексе с ферритином, либо выделяться наружу и связываться с трансферрином.

Синтез билирубина

Реакции распада гемоглобина и образования билирубина

Билирубин – токсичное, жирорастворимое вещество, способное разобщать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Строение билирубина

Строение билирубина

Выведение билирубина

Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямой билирубин.

Схема нормального обмена билирубина в норме

Этапы метаболизма билирубина в организме

Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (транспортный белок органических анионов) или по механизму флип-флоп. Далее при участии цитозольного связывающего белка лигандина (Y-протеин) билирубин транспортируется в ЭПР, где протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию конъюгации могут вступать сульфаты, фосфаты, глюкозиды.

Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазы превращаются в свободный билирубин. Одновременно, даже в норме (особенно у взрослых), некоторое количество билирубин-глюкуронидов может попадать из желчи в кровь по межклеточным щелям.

Таким образом, в плазме крови обычно присутствуют две формы билирубина: свободный (непрямой), попадающий сюда из клеток РЭС (80% и более всего количества), и связанный (прямой), попадающий из желчных протоков (в норме не более 20%).

Термины “связанный“, “конъюгированный“, “свободный“, “несвязанный” отражают взаимодействие билирубина и глюкуроновой кислоты (но не билирубина и альбумина!).

Термины “прямой”  и “непрямой” введены, исходя из возможности химической реакции билирубина с диазореактивом  Эрлиха. Связанный билирубин реагирует с реактивом напрямую, без добавления дополнительных реагентов, т.к. является водорастворимым. Несвязанный (жирорастворимый) билирубин требует добавочных реактивов, реагирует не прямо.

Превращение в кишечнике

В кишечнике билирубин подвергается восстановлению под действием микрофлоры до мезобилирубина и мезобилиногена (уробилиногена). Часть уробилиногена всасывается и с кровью портальной вены попадает в печень, где либо распадается до моно-, ди- и трипирролов, либо  окисляется до билирубина и снова экскретируется. При этом при здоровой печени в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами.

Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается до стеркобилиногена. Далее

  • малая часть стеркобилиногена может всасываться и катаболизировать в печени, подобно уробилиногену,
  • незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и в мочу. После окисления на воздухе из стеркобилиногена образуется стеркобилин мочи,
  • однако основное количество стеркобилиногена достигает нижних отделов толстого кишечника и выделяется. В прямой кишке и на воздухе стеркобилиноген окисляется в стеркобилин, окрашивая кал,
  • аналогично уробилиноген, появляющийся в моче при патологии печени, окисляется в уробилин.

Очень часто стеркобилиноген, содержащийся в нормальной моче, называют уробилиногеном. И в клинической практике обычно не проводят различий между стеркобилиногеном и уробилиногеном мочи, их рассматривают как один пигмент – урохромы (уробилиноиды), что может создавать некоторую путаницу при оценке результатов анализа.

Источник

Гемоглобин синтезируется в клетках костного мозга. Все необходимые для синтеза гемоглобина составные части поступают с током крови.

Белковая часть молекулы синтезируется как и все простые белки из аминокислот матричным способом.

Синтез гема протекает в несколько стадий под влиянием различных ферментов:

1. Вначале происходит образование дельта-аминолевулиновой кислоты. Это реакция протекает в результате конденсации сукцинил-КоА и глицина в митохондриях под действием фермента аминолевулинатсинтетазы.

2.Следующая реакция протекает в цитоплазме. Происходит образование порфобилиногена в результате реакции конденсации двух молекул дельта-аминолевулиновых кислот.

3.Затем, в результате многоступенчатых реакций из четырех монопиррольных молекул порфобилиногена образуется протопорфирин 1Х, являющийся непосредственным предшественником гема.

4. Протопорфирин IX присоединяет молекулу железа (реакция осуществляется под влиянием фермента гемсинтетазы или феррохелатазы) и образуется гем, который затем ис­пользуется для биосинтеза всех гемопротеидов. Оба фермен­та, участвующие в синтезе ПБГ, регулируемые, они ингибируются гемом и НЬ. Поэтому гем не образуется в избытке или недостатке. Также строго в определенном количестве образу­ется и белковая часть Нb, т. к. ее синтез может происходить только в присутствии тема, и образующиеся полипептидные цепи тут же соединяются с гемом. При низкой концентрации гема, когда нарушается его синтез, образование гемоглобина также замедляется.

Каждая из образовавшихся полипетидных цепей глобина присоединяются кодному гему, образуя моном ер гемоглобиан. 4 таких мномера, объединивщись, образуют гемоглобин.

Основной функцией гемоглобина является перенос кислорода из легких к тканям и перенос углекислого газа от тканей к легким, участие в поддержке рН крови. Свои функции гемоглобин выполняет только в составе эритроцита. Продолжительность жизни эритроцита 110-120 дней. Затем эритроцит подвергается гемолизу

3. Распад гемоглобина. Превращение билирубина в желудочно- кишечном тракте. Свободный и связанный билирубин. Свойства.

При гемолизе эритроцитов гемоглобин попадает в кровь и соединяется с белком гаптоглобином, в виде комплекса гемоглобин-гаптоглобин (Нр-Нb) транспортируется в клетки макрофагально-моноцитарной системы (ММС): это Купферовы клетки печени, клетки лимфоузлов, селезенки, пейеровых бляшек в кишечнике.

Процесс начинается с окислительного расщепления метинового мостикамежду первым и вторым пиррольными кольцами и образуется вердоглобин. Затем от вердоглобина отщепляется глобин, железо и образуется биливердин (зеленого цвета), вещество линейной структуры. Железо соединяется с b-глобулинами и в виде трансферина доставляется в печень и селезенку, где депонируется в виде ферритина. Глобин распадается так же как и все простые белки до аминокислот.

Биливердин восстанавливается за счет НАДФН2 в неконьюгированный,

свободный билирубин, который не растворим в воде и является токсичным соединением. Свободный билирубин выходит из клеток ММС, соединяется с

альбуминами и поступает в гепатоциты. В крови он называется непрямым потому, что дает реакцию с реактивом Эрлиха не сразу, а после добавления в сыворотку крови кофеинового реактива или спирта для осаждения белка.

В Купферовых клетках печени распад гемоглобина также начинается с

образования вердоглобина, затем биливердина. В печени непрямой билирубин обезвреживается в гепатоцитах путем реакции конъюгации, соединяясь с одной или двумя молекулами глюкуроновой кислоты, образуя моно- или диглюкуронид билирубина. Такой билирубин называется конъюгированным и

связанным и прямым. Этот билирубин хорошо растовряется в воде, не обладает токсическими свойствами. Биливердин и прямой билирубин собираются в желчном пузыре, придавая желчи оливковый цвет и потому их относят к пигментам желчи. Желчь поступает в тонкий кишечник, но в желчном протоке прямой билирубин, теряя глюкуроновые кислоты, снова превращается в непрямой. Биливердин проходит через весь кишечник не изменяя своей химической структуры и удаляется с калом, окрашивая его в зеленоватый цвет, т.е. он является пигментом кала. А непрямой билирубин в кишечнике восстанавливается до мезобилиногена (уробилиногена), часть которого всасывается в воротную вену и возвращается в печень, где распадается до бесцветных моно- и дипирролов. Последние выводятся через почки вместе с мочой.

Большая часть мезобилиногена поступает в толстый кишечник, где под

влиянием ферментов микроорганизмов восстанавливается в стеркобилиноген. Часть стеркобилиногена, всасываясь в кровь через геморроидальные вены, попадает в почки. В моче под действием света и воздуха происходит окисление стеркобилиногена до стеркобилина, который придает моче желтый цвет, т.е. является пигментом мочи. Остальная часть стеркобилиногена окисляется в толстом кишечнике на свету до стеркобилина и вместе с биливердином является пигментом кала, придавая ему коричнево-зеленый цвет.

У грудных детей в кишечнике нет гнилостных бактерий, поэтому

билирубин не превращается в стеркобилиноген и выводится как таковой. Соответственно цвет кала у детей обусловлен биливердином и билирубином (желто-зеленый).

У детей в первые три месяца эмбрионального периода образуется эмбриональный гемоглобин. Затем он преобразуется в фетальный (гемоглобин F), который доминирует вплоть до рождения ребенка. После рождения в течение первого месяца жизни фетальный гемоглобин постепенно заменяется на гемоглобин взрослого (гемоглобин А), отличающегося составом полипептидных цепей. Эмбриональный и фетальный гемоглобин обладают более высоким сродством к кислороду по сравнению с гемоглобином взрослого.

Пигменты желчи, кала и мочи.

При распаде гемоглобина образуются пигменты желчи, кала и мочи.

Пигменты желчи: биливердин (зеленого цвета), связанный билирубин (глюкурониды билирубина –желтого цвета). Цвет желчи зависит от соотношения этих пигментов.

Пигменты кала: биливердин (зеленого цвета), стеркобилин (коричневого цвета)

Пигмент мочи: стеркобилин

Цвет сыворотки крови тоже зависит в определенной степени от наличия в ней билирубина. В норме количество общего би­лирубина в крови равно 8—20 мкмоль/л, на долю непрямого билирубина приходится 75- 100%, а прямого от 0 до 25%. Количество прямого билирубина незначительно. Прямой билирубин про­ходит через пачечную ткань, и появляется в моче, непрямой билирубин в моче появиться не может, вследствие его нераст­воримости в воде.

Источник

Гемоглобин
входит в состав группы белков гемопротеины,
которые сами являются подвидом
хромопротеинов и подразделяются на
неферментативные белки (гемоглобин,
миоглобин) и ферменты (цитохромы,
каталаза, пероксидаза). Небелковой
частью их является гем – структура,
включающая в себя порфириновое кольцо
(состоящее из 4 пиррольных колец) и иона
Fe2+. Железо связывается с порфириновым
кольцом двумя координационными и двумя
ковалентными связями.

Строение
гемоглобина.

Гемоглобин представляет собой белок,
включающий 4 гемсодержащие белковые
субъединицы. Между собой протомеры
соединяются гидрофобными, ионными,
водородными связями по принципу
комплементарности. При этом они
взаимодействуют не произвольно, а
определенным участком – контактной
поверхностью. Этот процесс высокоспецифичен,
контакт происходит одновременно в
десятках точек по принципу комплементарности.
Взаимодействие осуществляют разноименно
заряженные группы, гидрофобные участки,
неровности на поверхности белка. Белковые
субъединицы в нормальном гемоглобине
могут быть представлены различными
типами полипептидных цепей: α, β, γ, δ,
ε, ξ (соответственно, греч. – альфа, бета,
гамма, дельта, эпсилон, кси). В состав
молекулы гемоглобина входят по две цепи
двух разных типов. Гем состоит из иона
двухвалентного железа и порфирина. В
основе структуры порфиринов находится
порфин. Порфин представляет собой четыре
пиррольных кольца, связанных между
собой метеновыми мостикамиГем соединяется
с белковой субъединицей, во-первых,
через остаток гистидина координационной
связью железа, во-вторых, через гидрофобные
связи пиррольных колец и гидрофобных
аминокислот. Гем располагается как бы
“в кармане” своей цепи и формируется
гемсодержащий протомер.

Существует
несколько нормальных
вариантов гемоглобина
:

HbР
– примитивный гемоглобин, содержит 2ξ-
и 2ε-цепи, встречается в эмбрионе между
7-12 неделями жизни,

HbF
– фетальный гемоглобин, содержит 2α- и
2γ-цепи, появляется через 12 недель
внутриутробного развития и является
основным после 3 месяцев,

HbA
– гемоглобин взрослых, доля составляет
98%, содержит 2α- и 2β-цепи, у плода появляется
через 3 месяца жизни и к рождению
составляет 80% всего гемоглобина,

HbA2
– гемоглобин взрослых, доля составляет
2%, содержит 2α- и 2δ-цепи,

HbO2
– оксигемоглобин, образуется при
связывании кислорода в легких, в легочных
венах его 94-98% от всего количества
гемоглобина,

HbCO2
– карбогемоглобин, образуется при
связывании углекислого газа в тканях,
в венозной крови составляет 15-20% от всего
количества гемоглобина.

Патологические
формы гемоглобина

HbS
– гемоглобин серповидно-клеточной
анемии.

MetHb
– метгемоглобин, форма гемоглобина,
включающая трехвалентный ион железа
вместо двухвалентного. Такая форма
обычно образуется спонтанно, в этом
случае ферментативных мощностей клетки
хватает на его восстановление. При
использовании сульфаниламидов,
употреблении нитрита натрия и нитратов
пищевых продуктов, при недостаточности
аскорбиновой кислоты ускоряется переход
Fe2+ в Fe3+. Образующийся metHb не способен
связывать кислород и возникает гипоксия
тканей. Для восстановления ионов железа
в клинике используют аскорбиновую
кислоту и метиленовую синь.

Hb-CO
– карбоксигемоглобин, образуется при
наличии СО (угарный газ) во вдыхаемом
воздухе. Он постоянно присутствует в
крови в малых концентрациях, но его доля
может колебаться от условий и образа
жизни. Угарный газ является активным
ингибитором гем-содержащих ферментов,
в частности, цитохромоксидазы 4-го
комплекса дыхательной цепи.

HbA1С
– гликозилированный гемоглобин.
Концентрация его нарастает при хронической
гипергликемии и является хорошим
скрининговым показателем уровня глюкозы
крови за длительный период времени.Синтез и распад гемоглобина биохимия

Биосинтез
гема.

Гем является небелковой частью многих
гемопротеинов:

гемоглобин
(до 85% общего количества гема организма),
локализованный в эритроцитах и клетках
костного мозга,

миоглобин
скелетных мышц и миокарда (17%),

цитохромы
дыхательной цепи и P450, цитохромоксидаза,
гомогентизатоксидаза, пероксидаза,
миелопероксидаза, каталаза, тиреопероксидаза
и т.д. – менее 1%. Синтез гема в основном
идет в предшественниках эритроцитов,
клетках печени, почек, слизистой
кишечника, и в остальных тканях. Первая
реакция синтеза с участием
δ-аминолевулинат-синтазы происходит в
митохондриях. Следующая реакция при
участии аминолевулинатдегидратазы
(порфобилиноген-синтазы) протекает в
цитозоле.Гем синтезируется во всех
тканях, но с наибольшей скоростью в
костном мозге и печени. В костном мозге
гем необходим для синтеза гемоглобина
в ретикулоцитах, в гепатоцитах – для
образования цитохрома Р450.

Первая
реакция синтеза гема – образование
5-аминолевулиновой кислоты из глицина
и сук-цинил-КоА идёт в матриксе митохондрий,
где в ЦТК образуется один из субстратов
этой реакции – сукцинил-КоА. Эту реакцию
катализирует пиридоксальзависимый
фермент аминолевулинатсинтаза. Из
митохондрий 5-аминолевулиновая кислота
поступает в цитоплазму. В цитоплазме
проходят промежуточные этапы синтеза
гема: соединение 2 молекул 5-аминолевулиновой
кислоты молекулу порфобилиногена,
дезаминирование порфобилиногена с
образованием гидроксиметилбилана,
ферментативное превращение
гидроксиметилбилана в молекулу
уропор-фобилиногена III, декарбоксилирование
последнего с образованием копропорфириногена
III. Гидроксиметилбилан может также
нефермента-тивно превращаться в
уропорфириноген I, который декарбоксилируется
в копропорфирино-ген I. Из цитоплазмы
копропорфириноген III опять поступает
в митохондрии, где проходят заключительные
реакции синтеза гема. В результате двух
последовательных окислительных реакций
копропорфириноген III превращается в
протопорфириноген IX, а протопорфириноген
IX – в Протопорфирин IX. Фермент феррохела-таза,
присоединяя к протопорфирину IX
двухвалентное лентное железо, превращает
его в гем. Источником железа для синтеза
гема служит депонирующий железо белок
ферритин. Синтезированный гем, соединяясь
с α и β-полипепептидными цепями глобина,
образует гемоглобин. Гем регулирует
синтез глобина: при снижении скорости
синтеза гема синтез глобина в ретикулоцитах
тормозится. Синтез и распад гемоглобина биохимия

Регуляция
синтеза гема

1.
Скорость синтеза глобиновых цепей
зависит от наличия гема, он ускоряет
биосинтез “своих” белков.

2.
Основным регуляторным ферментом синтеза
гема является аминолевулинатсинтаза.

гем
после взаимодействия с молекулой
белка-репрессора формирует активный
репрессорный комплекс, связывается с
ДНК и подавляет транскрипцию, мРНК для
фермента не образуется и синтез фермента
прекращается. Также имеется отрицательный
аллостерический эффект гема на фермент.

с
другой стороны, достаточное количество
ионов железа оказывает положительный
эффект при синтезе молекулы
аминолевулинатсинтазы. В клетке имеется
особый железосвязывающий белок, который
в отсутствии ионов железа обладает
сродством к мРНК фермента и блокирует
ее трансляцию в рибосоме, т.е. синтез
белковой цепи. Ионы железа связываются
с этим железосвязывающим белком, образуя
с ним неактивный комплекс, что инициирует
синтез фермента.

3.
Положительным модулятором
аминолевулинатсинтазы служит гипоксия
тканей, которая в эритропоэтических
тканях индуцирует синтез фермента.

4.
В печени повышение активности
аминолевулинатсинтазы вызывают
соединения, усиливающие работу
микросомальной системы окисления
(жирорастворимые токсины, стероиды) –
при этом возрастает потребление гема
для образования цитохрома Р450, что
снижает внутриклеточную концентрацию
свободного гема. В результате происходит
дерепрессия синтеза фермента.

Распад.
За сутки у человека распадается около
9 г гемопротеинов, в основном это
гемоглобин эритроцитов. Эритроциты
живут 90-120 дней, после чего лизируются
в кровеносном русле или в селезенке.
При разрушении эритроцитов в кровяном
русле высвобождаемый гемоглобин образует
комплекс с белком-переносчиком
гаптоглобином (фракция α2-глобулинов
крови) и переносится в клетки
ретикуло-эндотелиальной системы (РЭС)
селезенки (гл образом), печени и костного
мозга.

Первая
реакция катаболизма гема происходит
при участии NADPH-зависимого ферментативного
комплекса гемоксигеназы. Ферментная
сисгема локализована в мембране ЭР, в
области электронтранспортных цепей
микросомального окисления. Фермент
катализирует расщепление связи между
двумя пиррольными кольцами, содержащих
винильные остатки, – таким образом,
раскрывается структура кольца. В ходе
реакции образуются линейный тетрапир-рол
– биливердин (пигмент жёлтого цвета) и
монооксид углерода (СО), который получается
из углерода метениловой группы. Гем
индуцирует транскрипцию гена гемоксигеназы,
абсолютно специфичной по отношению к
тему.

Ионы
железа, освободившиеся при распаде
гема, могут быть использованы для синтеза
новых молекул гемоглобина или для
синтеза других железосодержащих белков.
Биливердин восстанавливается до
билирубина NADPH-зависимым ферментом
биливердинредуктазой. Билирубин
образуется не только при распаде
гемоглобина, не также при катаболизме
других гемсодержащю белков, таких как
цитохромы и миоглобин. При распаде 1 г
гемоглобина образуется 35 мг билирубина,
а в сутки у взрослого человека – примерно
250-350 мг билирубина. Дальнейший метаболизм
билирубина происходит в печени.

В
клетках РЭС гем в составе гемоглобина
окисляется молекулярным кислородом. В
реакциях последовательно происходит
разрыв метинового мостика между 1-м и
2-м пиррольными кольцами гема с их
восстановлением, отщеплением железа и
белковой части и образованием оранжевого
пигмента билирубина. Билирубин
– токсичное, жирорастворимое вещество,
способное нарушать окислительное
фосфорилирование в клетках. Особенно
чувствительны к нему клетки нервной
ткани. Из клеток ретикуло-эндотелиальной
системы билирубин попадает в кровь.
Здесь он находится в комплексе с
альбумином плазмы, в гораздо меньшем
количестве – в комплексах с металлами,
аминокислотами, пептидами и другими
малыми молекулами. Образование таких
комплексов не позволяет выделяться
билирубину с мочой. Билирубин в комплексе
с альбумином называется свободный
(неконъюгированный) или непрямой
билирубин. Из сосудистого русла в
гепатоциты билирубин попадает с помощью
белка-переносчика (лигандина). В клетке
протекает реакция связывания билирубина
с УДФ-глюкуроновой кислотой, при этом
образуются моно- и диглюкурониды. Кроме
глюкуроновой кислоты, в реакцию могут
вступать сульфаты, фосфаты, глюкозиды.
Билирубин-глюкуронид получил название
связанный (конъюгированный) или прямой
билирубин. После образования
билирубин-глюкурониды АТФ-зависимым
переносчиком секретируются в желчные
протоки и далее в кишечник, где при
участии бактериальной β-глюкуронидазы
превращаются в свободный билирубин.
Одновременно некоторое количество
билирубин-глюкуронидов может попадать
(особенно у взрослых) из желчи в кровь
по межклеточным щелям. Таким образом,
в крови в норме одновременно существуют
две формы билирубина: свободный,
попадающий сюда из клеток РЭС (около
80% всего количества), и связанный,
попадающий из желчных протоков (до 20%).
Превращение
в кишечнике
.
В кишечнике билирубин подвергается
восстановлению под действием микрофлоры
до мезобилирубина и мезобилиногена
(уробилиногена). Часть последних
всасывается и с током крови вновь
попадает в печень, где окисляется до
ди- и трипирролов. При этом в здоровом
организме в общий круг кровообращения
и в мочу мезобилирубин и уробилиноген
не попадают, а полностью задерживаются
гепатоцитами. Оставшаяся в кишечнике
часть пигментов ферментами бактериальной
флоры толстого кишечника восстанавливается
до стеркобилиногена и выделяется из
организма, окрашивая кал. Незначительное
количество стеркобилиногена через
геморроидальные вены попадает в большой
круг кровообращения, отсюда в почки и
выделяется с мочой. На воздухе
стеркобилиноген и уробилиноген
превращаются, соответственно, в
стеркобилин и уробилин.
Ситуации,
при которых в крови накапливается
билирубин, в зависимости от причины
делятся на три вида:Синтез и распад гемоглобина биохимияСинтез и распад гемоглобина биохимияСинтез и распад гемоглобина биохимия

1.Гемолитические
– в результате гемолиза при избыточном
превращении гемоглобина в билирубин,

2.Печеночно-клеточные
– когда печень не в состоянии обезвредить
билирубин,

3.Механические
– если билирубин не может попасть из
печени в кишечник из-за механического
перекрытия желчевыводящих путей.

Накопление
билирубина в крови свыше 43 мкмоль/л
ведет к связыванию его эластическими
волокнами кожи и конъюнктивы, что
проявляется в виде желтухи. Так как
свободный билирубин липофилен, то он
легко накапливается в подкожном жире
и нервной ткани. Последнее особенно
опасно для детей, особенно для
новорожденнных.

Гемолитическая
или надпеченочная желтуха

– ускоренное образование билирубина
в результате усиления внутрисосудистого
гемолиза. К данному типу желтух относятся
гемолитические анемии различного
происхождения: врожденный сфероцитоз,
серповидно-клеточная анемия, дефицит
глюкозо-6-фосфатдегидрогеназы, отравление
сульфаниламидами, талассемии, сепсис,
лучевая болезнь, несовместимость крови.
В данном случае гипербилирубинемия
развивается за счет фракции непрямого
билирубина. Гепатоциты усиленно переводят
непрямой билирубин в связанную форму,
секретируют его в желчь, в результате
в кале увеличивается содержание
стеркобилина, интенсивно его окрашивая.
В моче возрастает содержание уробилина,
билирубин отсутствует.У новорожденных
гемолитическая желтуха может развиться
как симптом гемолитической болезни
новорожденного.

Механическая
или подпеченочная желтуха

развивается вследствие снижения оттока
желчи при непроходимости желчного
протока – желчные камни, новообразования
поджелудочной железы, гельминтозы. В
результате застоя желчи происходит
растяжение желчных капилляров,
увеличивается проницаемость их стенок.
Не имеющий оттока в кишечник прямой
билирубин поступает в кровь, в результате
развивается гипербилирубинемия. В
тяжелых случаях, вследствие переполнения
гепатоцитов прямым билирубином, реакция
конъюгации с глюкуроновой кислотой
может нарушаться, присоединяется
печеночно-клеточная желтуха (см ниже).
В результате в крови увеличивается
концентрация непрямого билирубина. В
моче резко увеличен уровень билирубина
(цвет темного пива) и снижено количество
уробилина, практически отсутствует
стеркобилин кала (серовато-белое
окрашивание).

Паренхиматозная
(печеночно-клеточная) желтуха

– причиной может быть нарушение на всех
трех стадиях превращения билирубина в
печени: извлечение билирубина из крови
печеночными клетками, его конъюгирование
и секреция в желчь. Наблюдается при
вирусных и других формах гепатитов,
циррозе и опухолях печени, жировой
дистрофии печени, при отравлении
токсическими гепатотропными веществами,
при врожденных патологиях. Так как
нарушаются все процессы превращения
билирубина в печени, гипербилирубинемия
развивается за счет обеих фракций,
преимущественно прямого билирубина.
Концентрация его возрастает из-за
нарушения секреции в желчь и увеличения
проницаемости мембран клеток печени.
Количество непрямого билирубина
возрастает за счет функциональной
недостаточности гепатоцитов и/или
снижения их количества. В моче определяется
билирубин (цвет крепкого черного чая),
умеренно увеличена концентрация
уробилина, уровень стеркобилина кала
в норме или снижен.

Гемолитическая
болезнь новорожденного.
Причины:
Несовместимость
крови матери и плода по группе или по
резус-фактору. Накопление гидрофобной
формы билирубина в подкожном жире
обуславливает желтушность кожи. Однако
реальную опасность представляет
накопление билирубина в сером веществе
нервной ткани и ядрах ствола с развитием
“ядерной желтухи” (билирубиновая
энцефалопатия).

Клиническая
диагностика: Проявляется сонливостью,
плохим сосанием, умственной отсталостью,
ригидностью затылочных мышц, тоническими
судорогами, тремором конечностей,
изменением рефлексов с возможным
развитием глухоты и параличей.

Физиологическая
(транзиторная) желтуха новорожденных.
Причины:относительное
снижение активности УДФ-глюкуронилтрансферазы
в первые дни жизни, связанное с повышенным
распадом фетального гемоглобина,абсолютное
снижение активности УДФ-глюкуронилтрансферазы
в первые дни жизни,дефицит
лигандина,слабая
активность желчевыводящих путей.Клиническая
диагностика:окрашивание
кожи на 3-4 день после рождения,гемолиза
и анемии нет.Симптомы
исчезают спустя 1-2 недели после рождения.

Желтуха
недоношенных.
Причины:
относительное снижение активности
УДФ-глюкуронилтрансферазы в первые дни
жизни, связанное с повышенным распадом
фетального гемоглобина,абсолютное
снижение активности УДФ-глюкуронилтрансферазы
в первые дни жизни,дефицит
лигандина,слабая
активность желчевыводящих путей.Клиническая
диагностика:окрашивание кожи,гемолиза
и анемии нет. Исчезает спустя 3-4 недели
после рождения.