Сравнительная характеристика гемоглобина и миоглобина
Гемоглобин и миоглобин являются двумя типами глобиновых белков, которые служат в качестве связывающих кислород белков. Оба белка способны увеличивать количество растворенного кислорода в биологически
Основное отличие – гемоглобин против миоглобина
Гемоглобин и миоглобин являются двумя типами глобиновых белков, которые служат в качестве связывающих кислород белков. Оба белка способны увеличивать количество растворенного кислорода в биологических жидкостях позвоночных, а также у некоторых беспозвоночных. Органические простетические группы со сходными характеристиками участвуют в связывании кислорода в обоих белках. Но трехмерная ориентация в пространстве или стереоизомерия гемоглобина и миоглобина различны. Из-за этой разницы количество кислорода, которое может связываться с каждой из молекул белка, также различно. Гемоглобин способен плотно связываться с кислородом в то время как миоглобин неспособен к прочному связыванию с кислородом. Это различие между гемоглобином и миоглобином приводит к их различным функциям; гемоглобин находится в кровотоке, транспортируя кислород от легких к остальной части тела в то время как миоглобин находится в мышцах, выделяя необходимый кислород.
Ключевые области покрыты
1. Что такое гемоглобин
– определение, структура и состав, функция
2. Что такое миоглобин
– определение, структура и состав, функция
3. Сходство между гемоглобином и миоглобином
– очертить сходство
4. В чем разница между гемоглобином и миоглобином
– Сравнение основных различий
Ключевые термины: гемоглобин, миоглобин, кислород, гем, белки, глобиновый белок, кровь
Что такое гемоглобин
Гемоглобин – это многочастичный глобулярный белок с четвертичной структурой. Он состоит из двух α и двух β субъединиц, расположенных в тетраэдрической структуре. Гемоглобин является железосодержащим металлопротеином. Каждая из четырех глобулярных белковых субъединиц связана с небелковой протезной гемовой группой, которая связывается с одной молекулой кислорода. Производство гемоглобина происходит в костном мозге. Глобиновые белки синтезируются рибозомами в цитозоле. Гемовая часть синтезируется в митохондриях. Заряженный атом железа удерживается в порфириновом кольце путем ковалентного связывания железа с четырьмя атомами азота в одной плоскости. Эти атомы N принадлежат имидазольному кольцу остатка гистидина F8 каждой из четырех субъединиц глобина. В гемоглобине железо существует как Fe2+, придавая красный цвет эритроцитам.
У людей есть три типа гемоглобина: гемоглобин А, гемоглобин А2 и гемоглобин Ф. Гемоглобин А это распространенный тип гемоглобина, который кодируется HBA1, HBA2, а также ГБД Гены. Четыре субъединицы гемоглобина А состоят из двух α и двух субъединиц β (α2β2). Гемоглобин А2 и гемоглобин F редки и состоят из двух α и двух субъединиц δ и двух α и двух субъединиц γ соответственно. У младенцев тип гемоглобина Hb F (α2γ2).
Поскольку молекула гемоглобина состоит из четырех субъединиц, она может связываться с четырьмя молекулами кислорода. Таким образом, гемоглобин обнаружен в эритроцитах, как переносчик кислорода в крови. Из-за присутствия в структуре четырех субъединиц связывание кислорода увеличивается, когда первая молекула кислорода связывается с первой гем-группой. Этот процесс определяется как кооперативное связывание кислорода. Гемоглобин составляет 96% сухого веса эритроцитов. Некоторая часть углекислого газа также связана с гемоглобином для транспортировки из тканей в легкие. 80% углекислого газа транспортируется через плазму. Структура гемоглобина показана на Рисунок 1.
Рисунок 1: Структура гемоглобина
Функция гемоглобина
Что такое миоглобин
Миоглобин является кислородсвязывающим белком в мышечных клетках позвоночных, придающим мышцам отчетливый красный или темно-серый цвет. Это исключительно выражено в скелетных мышцах и сердечных мышцах. Миоглобин составляет 5-10% цитоплазматических белков в мышечных клетках. Поскольку аминокислотные изменения в полинуклеотидных цепях гемоглобина и миоглобина являются консервативными, как гемоглобин, так и миоглобин имеют сходную структуру. Кроме того, миоглобин представляет собой мономер, состоящий из одной полинуклеотидной цепи, состоящей из одной гем-группы. Следовательно, он способен связываться с одной молекулой кислорода. Таким образом, в миоглобине не происходит кооперативного связывания кислорода. Но аффинность связывания миоглобина является высокой по сравнению с таковой гемоглобина. В результате миоглобин служит белком, запасающим кислород в мышцах. Миоглобин выделяет кислород, когда мышцы функционируют. 3-D структура гемоглобина показана на фигура 2.
Рисунок 2: Миоглобин
Сходства между гемоглобином и миоглобином
- И гемоглобин, и миоглобин являются связывающими кислород глобулярными белками.
- Оба они содержат кислородсвязывающий гем в качестве протезной группы.
- И гемоглобин, и миоглобин дают красный цвет крови и мышцам соответственно.
Разница между гемоглобином и миоглобином
Определение
Гемоглобин: Гемоглобин – это красный белок, который отвечает за транспортировку кислорода в крови позвоночных.
Миоглобин: Миоглобин – это красный белок с гемом, который переносит и запасает кислород в мышечных клетках.
Молекулярный вес
Гемоглобин: Молекулярная масса гемоглобина составляет 64 кДа.
Миоглобин: Молекулярная масса гемоглобина составляет 16,7 кДа.
Состав
Гемоглобин: Гемоглобин состоит из четырех полипептидных цепей.
Миоглобин: Миоглобин состоит из одной полипептидной цепи.
Четвертичная структура
Гемоглобин: Гемоглобин представляет собой тетрамер, состоящий из двух α и двух β субъединиц.
Миоглобин: Миоглобин является мономером. Следовательно, ему не хватает четвертичной структуры.
Количество молекул кислорода
Гемоглобин: Гемоглобин связывается с четырьмя молекулами кислорода.
Миоглобин: Миоглобин связывается только с одной молекулой кислорода.
Кооперативное связывание
Гемоглобин: Поскольку гемоглобин является тетрамером, он проявляет кооперативное связывание с кислородом.
Миоглобин: Поскольку миоглобин является мономером, он не проявляет кооперативного связывания.
Сродство к кислороду
Гемоглобин: Гемоглобин обладает низким сродством к связыванию с кислородом.
Миоглобин: Миоглобин обладает высоким сродством связываться с кислородом, что не зависит от концентрации кислорода.
Связь с кислородом
Гемоглобин: Гемоглобин способен плотно связываться с кислородом.
Миоглобин: Миоглобин не способен тесно связываться с кислородом.
Вхождение
Гемоглобин: Гемоглобин находится в кровотоке.
Миоглобин: Миоглобин находится внутри мышц.
Типы
Гемоглобин: Гемоглобин А, гемоглобин А2 и гемоглобин F являются типами гемоглобина у людей.
Миоглобин: Единственный тип миоглобина обнаружен во всех клетках.
функция
Гемоглобин: Гемоглобин берет кислород из легких и транспортирует к остальной части тела.
Миоглобин: Миоглобин накапливает кислород в мышечных клетках и выделяет при необходимости.
Заключение
Гемоглобин и миоглобин являются двумя связывающими кислород глобулярными белками у позвоночных. Гемоглобин представляет собой тетрамер, который совместно связывается с четырьмя молекулами кислорода. Миоглобин – это мономер, состоящий из одной группы гемов. Поскольку связывающая способность гемоглобина выше, чем у миоглобина, гемоглобин используется в качестве транспортирующего кислород белка в крови. Миоглобин используется в качестве запасающего кислород белка в мышечных клетках. Сродство связывания кислорода с миоглобином выше, чем у гемоглобина. Основное различие гемоглобина и миоглобина заключается в их функции. Функциональное различие гемоглобина и миоглобина возникает из-за разницы их трехмерной структуры.
Ссылка:
1. «Миоглобин». Гемоглобин и миоглобин. Н.п., н.д. Web.
Гемоглобин – состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II). Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении. Нb + О2 → НbО2 – оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм рт. ст.).
В капиллярах тканей, где парциальное давление кислорода низкое (5 мм рт. ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2 – карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.
Сравнение зависимости насыщения от парциального давления кислорода показывает, что при парциальных давлениях кислорода, характерных для тканей, гемоглобин отдает значительные количества кислорода. В гемоглобине происходит перемещение атома железа в плоскость гема с одновременным изменением конформации полипептидной цепи, но так как молекула Нb имеет четвертичную структуру и отдельные цепи связаны между собой, то это позволяет передать изменения конформации на область связи между полипептидными цепями. Это изменяет положение в пространстве всей молекулы и облегчает доступ О2 к остальным гемам молекулы Нb. Одновременно это изменение конформации сопровождается появлением на поверхности групп, которые, диссоциируя, отдают протоны (Н+) в окружающую среду. При понижении парциального давления кислорода события повторяются в обратном направлении: отдача кислорода идет по мере снижения парциального давления, гемоглобин переходит в другое конформационное состояние, при этом из окружающей среды (ткань), где высока концентрация протонов, протоны присоединяются к гемоглобину. Такие изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.
При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.
Различные формы Нb определяются методом спектрального анализа. У взрослого человека молекула НbА (2 α-цепи и 2 β-цепи). Но от целого ряда условий состав цепей гемоглобина может меняться. У плода НbF (фетальный – 2 α-цепи, 2 γ-цепи) – он лучше связывает кислород при его относительной недостаточности в период внутриутробного развития.
В результате определенных нарушений генетического аппарата клетки Нb патологический, а заболевания – гемоглобинопатии наследственного происхождения.
Классическим примером является серповидно-клеточная анемия(аномальный гемоглобин – причина). Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.
Миоглобин – хромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо в составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.
Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.
Гем –простетическая группа многих важных с точки зрения функций белков.
Гем – небелковая часть, в составе находится Fе (ΙΙ), гем входит в состав флавопротеинов, гемопротеидов, гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов.
Знание вопросов биосинтеза и распада гема призвано помочь в понимании роли гемопротеинов в организме. Нарушение этих процессов связано с развитием заболеваний. Так, с нарушением биосинтеза гема связана группа заболеваний – порфирии.
Порфирии – группа заболеваний с нарушением биосинтеза гемма. группа заболеваний с нарушением биосинтеза гемма. Наблюдается накопление побочных промежуточных продуктов, которые откладываются в различных органах или выделяются в повышенных количествах с калом или мочой. Появление в моче в значительных количествах веществ незавершенного синтеза гемма либо продуктов его распада (копропорфирин и уропорфирин) вызывает порфиринурию. Моча пурпурно-красного цвета. Это бывает при некоторых поражениях печени, кишечных кровотечениях, интоксикациях. Порфиринурия является одним из признаков отравления свинцом, когда нарушается транспорт Fe, необходимого для синтеза гемоглобина.
Гораздо чаще встречаются патологические состояния, связанные с распадом гема и нарушением выведения из организма продуктов его катаболического превращения. Наиболее распространенной является желтуха.
глицин + сукцинил – КоА
синтаза 5-аминолевулиновой кислоты
5 – аминолевулиновая кислота
Уропорфириноген ΙΙΙ В цитоплазме клеток
Копропорфириноген ΙΙΙ
Протопорфирин ΙΧ
В митохондриях + Fe2+
клетки
Гем
Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин. Хромопротеиды растительного и животного происхождения, находящиеся в пищевых продуктах, подвергаются действию ферментов пищеварительного тракта.
Гемоглобин пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Белок расщепляется пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в ЖКТ, которые свойственны простым белкам. Простетическая группа – гемм – окисляется в гематин. Гематин всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в виде различных продуктов, образующихся под влиянием бактерий кишечника. Обычные химические способы обнаружения крови в кале, имеющие большое значение для клиники, основаны на реакциях гематина, и могут дать достоверные результаты только в том случае, если диета не содержит мяса, в котором присутствует миоглобин.
Время жизни эритроцитов у взрослого организма составляет около 4 месяцев. Спустя этот период времени эритроциты разрушаются в основном в печени, селезенке и костном мозге. В ходе разрушения из эритроцитов высвобождается гемоглобин (8 – 9 г в сутки).
- 2020
Способность связывать молекулу кислорода с гемовыми белками – это то, что имеет значение в обеих молекулах. Гемоглобин называется тетрамерным гемопротеином, а миоглобин называется мономерным белком. Гемоглобин систематически обнаруживается по всему телу, а миоглобин – только в мышечных тканях.
Гемоглобин изготовлен из белково-протезной группы и хорошо известен как переносчик кислородного пигмента. Это самая важная часть для поддержания жизни, так как она транспортирует кислород и углекислый газ по всему организму.
Миоглобин работает только на клетки мышц, получая кислород из эритроцитов и далее доставляя его к митохондриальной органелле клеток мышц. Впоследствии этот кислород используется для клеточного дыхания для создания энергии. В этой статье мы рассмотрим замечательные моменты, которые различают гемоглобин и миоглобин.
Сравнительная таблица
Основа для сравнения | Гемоглобин | Миоглобин |
---|---|---|
Количество цепей | Гемоглобин имеет 4 цепи двух разных типов – альфа и бета, дельта, гамма или эпсилон (в зависимости от типа гемоглобина). | Он содержит отдельные полипептидные цепи. |
Тип конструкции | Тетрамер | Мономер. |
Персональный | Связывает CO2, CO, NO, O2 и H +. | Связывается с O2, плотно и крепко. |
Их присутствие | Системно по всему телу. | В мышечных клетках. |
Типы кривой | Сигмовидная кривая связывания. | Гиперболическая кривая. |
Также известен как | Hb. | Миллибар |
Роль | Гемоглобин транспортируется вместе с кровью по всему телу и переносит кислород. | Миоглобин поставляет кислород только мышцам, что полезно во время голодания кислорода. |
Концентрация в крови | Высоко в РБК. | Низкий. |
Определение гемоглобина
Гемоглобин – это молекулы гемового белка, содержащиеся в эритроцитах, переносящие кислород из легких в ткани организма и возвращающие углекислый газ из тканей обратно в легкие.
Гемоглобин имеет меньшее сродство к связывающему кислороду, а его концентрация выше в эритроцитах (эритроцитах). Поэтому, когда кислород связывается с первой субъединицей гемоглобина, он превращается в четвертичную структуру белка и, таким образом, облегчает связывание других молекул.
В организме должен быть стандартный уровень Hb, который может варьироваться в зависимости от возраста и пола человека. Анемия – это состояние, при котором снижается уровень гемоглобина или эритроцитов в крови.
Структура гемоглобина
Гемоглобин содержит гемовую группу, которая является белком и удерживается нековалентно . Разница заключается в части глобина, которая имеет разное расположение аминокислот у разных животных.
« Гем » – это центральное железо, соединенное четырьмя пиррольными кольцами. Железо находится в форме иона трехвалентного железа, в то время как пиррольные кольца присоединены метиленовыми мостиками.
Глобин – белковая часть, представляет собой димер гетеродимера (альфа-бета), что означает, что четыре молекулы белка связаны, в которых могут присутствовать две альфа-глобулина и две другие цепи бета, дельта, гамма или эпсилон-глобулин, что зависит от тип гемоглобина. Эта цепь глобулина содержит «порфириновое» соединение, содержащее железо.
Гемоглобин (человек) состоит из двух альфа-субъединиц и двух бета-субъединиц, где каждая альфа-субъединица имеет 144 остатка, а бета-субъединица имеет 146 остатков. Помогает в транспортировке кислорода по всему организму.
Важность гемоглобина
- Придает цвет крови.
- Гемоглобин действует как носитель для переноса кислорода, а также углекислого газа.
- Он играет роль в метаболизме эритроцитов.
- Они действуют как физиологически активные катаболиты.
- Помогает в поддержании pH.
Типы гемоглобина
- Гемоглобин А1 (Hb-А1).
- Гемоглобин А2 (Hb-A2).
- Гемоглобин А3 (Hb-A3).
- Эмбриональный гемоглобин.
- Гликозилированный гемоглобин.
- Гетоглобин плода (Hb-A1).
Определение миоглобина
Миоглобин является разновидностью гемовых белков, служащих внутриклеточным хранилищем кислорода. Во время лишения кислорода связанный кислород, называемый оксимиоглобином, высвобождается из его связанной формы и далее используется для других метаболических целей.
Так как миоглобин имеет третичную структуру, которая легко растворяется в воде, в которой его свойства, которые экспонируются на поверхности молекул, являются гидрофильными, в то время как те молекулы, которые упакованы внутри молекулы, являются гидрофобными по природе. Как уже обсуждалось, это мономерный белок с молекулярной массой 16 700, что составляет одну четвертую от гемоглобина.
Структура миоглобина
Он состоит из не спиральных областей, от A до H, которые являются правосторонними альфа-спиралями, и 8 в количестве. Хотя структура миоглобина похожа на структуру гемоглобина.
Миоглобин также содержит белок под названием гем, который содержит железо и придает белкам красный и коричневый цвет. Он существует во вторичной структуре белка, имеющего линейную цепочку аминокислот. Он содержит одну субъединицу альфа-спиралей, а бета-листы и наличие водородной связи отмечают его стабилизацию.
Миоглобин помогает в транспортировке и хранении кислорода в мышечных клетках, который помогает во время работы мышц, обеспечивая их энергией. Кислород связывается с миоглобином более плотно, потому что венозная кровь объединяется прочнее, чем гемоглобин.
Миоглобин в основном содержится в мышцах, что полезно для организмов при дефиците кислорода. Киты и тюлени содержат большое количество миоглобина. Эффективность подачи кислорода ниже, чем у гемоглобина.
Важность миоглобина
- Миоглобин обладает сильным сродством к связыванию с кислородом, что позволяет ему эффективно хранить его в мышцах.
- Помогает организму в голодной ситуации с кислородом, особенно в анаэробной ситуации.
- Носите кислород к клеткам мышц.
- Также помогу в регулировании температуры тела.
Основные различия между гемоглобином и миоглобином
Обе молекулы обладают способностью связывать кислород, как обсуждалось выше, ниже приведены ключевые различия.
- Гемоглобин имеет четыре цепи двух разных типов – альфа и бета, гамма или эпсилон (в зависимости от типа гемоглобина) и образует структуру тетрамера, в то время как миоглобин содержит одну полипептидную цепь, так называемый мономер, хотя обе имеют центральный ион как железо и лиганд связываются как кислород.
- Гемоглобин связывается с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин связывается только с O2.
- Он поставляет гемоглобин вместе с кровью системно по всему телу, в то время как миоглобин поставляет кислород только мышцам .
- Гемоглобин, который также известен как Hb, присутствует в большем количестве в эритроцитах, чем миоглобин, также известный как Mb .
- Гемоглобин транспортируется вместе с кровью во все части тела, также помогает в транспортировке кислорода; Миоглобин обеспечивает кислород только для мышц, что полезно, когда в крови много кислорода.
сходства
Оба содержат железосодержащий белок в качестве центрального металла.
Оба являются глобулярным белком.
Оба имеют лиганд в виде кислорода (O2).
Вывод
Таким образом, мы можем сказать, что гемоглобин и миоглобин одинаково и физиологически важны из-за их способности связывать кислород. Это были первые молекулы, трехмерная структура которых была обнаружена с помощью рентгеновской кристаллографии. Нарушения в составляющих могут привести к серьезным заболеваниям и расстройствам.
Гемоглобин и миоглобин различаются по сродству связывания с кислородом. Но их центральный ион металла такой же, как и те же лиганд-связывающие молекулы. Они оба важны для тела, так как без них невозможно представить жизнь
Нет похожих сообщений.