У больного серповидноклеточной анемией состав аминокислот
Серповидноклеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение. Форма гемоглобина больных — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.
Этиология и патогенез[править | править код]
Заболевание связано с мутацией гена HBB, кодирующего β-цепь основной разновидности взрослого гемоглобина, гемоглобина А (HbA), вследствие чего синтезируется аномальный гемоглобин S, в молекуле которого вместо глутаминовой кислоты в шестом положении β-цепи находится валин. В условиях гипоксии гемоглобин S полимеризуется и образует длинные тяжи, в результате чего эритроциты приобретают серповидную форму.
Серповидноклеточная анемия наследуется по аутосомно-рецессивному типу (с неполным доминированием на уровне фенотипа). У носителей, гетерозиготных ( AS) по гену серповидноклеточной анемии, в эритроцитах присутствуют примерно в равных количествах гемоглобин S и гемоглобин А, то есть наблюдается кодоминирование. При этом в нормальных условиях у носителей симптомы практически никогда не возникают, и серповидные эритроциты выявляются случайно при лабораторном исследовании крови. Симптомы у носителей могут появиться при гипоксии (например, при подъёме в горы) или тяжёлой дегидратации организма. У гомозигот (SS) по гену серповидноклеточной анемии в крови имеются только эритроциты, несущие гемоглобин S, и болезнь протекает тяжело.
Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью к лизису и пониженной способностью к переносу кислорода, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезёнке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.
Эпидемиология[править | править код]
Серповидноклеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причём больные серповидноклеточной анемией обладают повышенной (хотя и не абсолютной) врождённой устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке.
Повышенной устойчивостью к малярии обладают и гетерозиготы-носители, которые анемией не болеют (преимущество гетерозигот), что объясняет высокую частоту этого вредного аллеля в африканских популяциях.
Распространение аллеля серповидноклеточной анемии (более тёмная окраска – большая частота встречаемости, наибольшая частота – около 15%)
Симптомы[править | править код]
- Усталость и анемия
- Приступы боли
- Отек и воспаление пальцев рук и/или ног и артрит
- Бактериальные инфекции
- Тромбоз крови в селезёнке и печени
- Лёгочные и сердечные травмы
- Язвы на ногах
- Асептический некроз
- Повреждение глаз
Симптомы серповидноклеточной анемии делятся на две основные категории. Из-за хрупкости красных клеток крови всегда наблюдается анемия, которая может привести к потере сознания, делает больного физически менее выносливым и может вызвать желтуху (связанную с чрезмерным распадом гемоглобина).
Кроме этого, периодическая закупорка мелких капилляров в любой части тела может привести к широкому спектру различных симптомов.
Почти невозможно описать «типичного пациента», страдающего серповидноклеточной анемией, поскольку симптомы и их тяжесть широко варьируют. Некоторые характерные особенности являются общими почти для всех пациентов с серповидноклеточной анемией.
В периоды гемолитических кризисов отмечается резкое падение уровня гемоглобина, которое сопровождается высокой температурой и чёрным цветом мочи.
У больных серповидной анемией меняется и внешний вид: отмечается высокий рост, худоба, удлиненность туловища, искривление позвоночника, башенный череп и изменённые зубы.
Обычно новорождённые вполне здоровы, имеют нормальный вес и нормально развиваются, никаких симптомов у них не проявляется до 3-месячного возраста. Первыми признаками серповидноклеточной анемии у младенца обычно являются опухание и болезненность кистей рук или стоп, слабость и искривление конечностей и иногда, несколько позднее, отказ от ходьбы. Этот симптом является результатом закупорки эритроцитами капилляров мелких костей кистей и стоп и нарушения кровотока. Эритроциты выпадают из жидкой части крови и откладываются в капиллярах в виде осадка. Скопление эритроцитов постепенно рассасывается само по себе, но до тех пор, пока этого не произойдет, требуется помощь врача, чтобы смягчить боль и обнаружить возможные сопутствующие заболевания. Ребёнок с серповидноклеточной анемией обычно выглядит бледным, возможно, слегка желтушным, но в остальных отношениях, как правило, здоров.
Единственным очень серьёзным осложнением серповидноклеточной анемии у ребёнка до 5-летнего возраста является инфекция. Скопление эритроцитов и закупорка капилляров в селезёнке, органе, который в норме отфильтровывает бактерии из кровотока, происходит в течение первых лет жизни, что делает ребёнка особенно восприимчивым к смертельному заражению крови — сепсису. Поэтому родителей маленьких детей, страдающих серповидноклеточной анемией, предупреждают, чтобы они были внимательны и не пропустили ранних симптомов инфекции, таких как раздражительность, нервозность, повышенная температура и плохой аппетит. Родители должны немедленно обращаться за медицинской помощью, если у ребёнка наблюдается какой-либо из этих симптомов. Если при заражении крови достаточно рано начинать применять антибиотики, фатальных осложнений можно избежать. После 5-летнего возраста, когда у ребёнка уже выработались соответствующие естественные антитела к такого рода бактериям, вероятность смертельной бактериальной инфекции существенно снижается.
Проблемой детей школьного возраста с серповидноклеточной анемией обычно является эпизодическая закупорка эритроцитами капилляров больших костей. В большинстве случаев эти эпизоды протекают относительно легко, наблюдаются лишь слабые ноющие боли в костях.
С возрастом процесс закупорки капилляров может затрагивать и другие органы. Если это произойдет, например, в лёгких, развивается серьёзное респираторное заболевание. Очень редкое осложнение, которое бывает меньше чем у 10% больных с серповидноклеточной анемией — закупорка сосудов мозга, приводящая к инсульту.
Подростки с серповидноклеточной анемией испытывают беспокойство и озабоченность из-за того, что их физическое развитие обычно задерживается на 2—3 года. Такие подростки обычно меньше ростом, чем их одноклассники, их часто дразнят за запаздывание в сексуальном развитии. Однако со временем половая зрелость все же наступает, и исследования показывают, что женщины с серповидноклеточной анемией имеют нормальную возможность к деторождению. Женщины с серповидноклеточной анемией, безусловно, способны вынашивать и рожать нормальных детей, но во время беременности у них повышается риск осложнений, которые могут привести к выкидышу, преждевременным родам или усилению анемии у матери. Такие беременные женщины должны находиться под наблюдением гинеколога, имеющего специальный опыт по беременности с повышенным риском. В течение беременности таким женщинам может потребоваться переливание крови.
У взрослых с серповидноклеточной анемией могут обнаруживаться симптомы хронической (постоянной или длительной) закупорки капилляров легких и почек, и может развиться хроническая легочная или почечная недостаточность. Эти два осложнения приводят к ранней смерти некоторых пациентов с серповидноклеточной анемией.
У других больных может происходить закупорка капилляров сетчатки глаза, что в конечном итоге может привести к слепоте.
Хотя все эти осложнения (почечная и лёгочная недостаточность, слепота, серьёзная инфекция и повторяющиеся костные кризы) характерны для страдающих серповидноклеточной анемией, крайне редко бывает так, чтобы все они наблюдались у одного пациента.
Лечение[править | править код]
Препараты для лечения[2]: вокселотор, кризанлизумаб.
Синонимы[править | править код]
Русские[править | править код]
- Дрепаноцитарная анемия
- Серповидноклеточная гемолитическая анемия
- Африканская анемия
- Дрепаноцитоз
- Менискоцитоз
- Анемия Херрика (Геррика)
- болезнь (синдром) Херрика (Геррика)
Английские[править | править код]
- Hemoglobin S disease
- ( Hb S disease)
- Herrick’s anemia
- Herrick disease (syndrome)
- Sickle-cell anemia
Примечания[править | править код]
Ссылки[править | править код]
- [da-med.ru/diseases/cat-60/d-99/ Da-med.ru ::: Серповидноклеточная анемия]
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных ссылок
|
КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
Так как, валин имеет неполярный остаток, который оказывается на поверхности дезоксигемоглобина Ѕ, то это снижает его растворимость и приводит к появлению «липкого» участка на наружной стороне каждой β – цепи гемоглобина Ѕ (рис.50).
Рис.50. Расположение «липких» и комплементарных им участков на
наружной стороне β-цепи гемоглобинов А и S
Это способствует полимеризации молекулы гемоглобина Ѕ. «Липкие» концы Нg Ѕ взаимодействуют с комплементарными им участками другой молекулы Нg Ѕ (рис.51), что приводит к образованию агрегатов большой длины – фиб-
Рис.51. Взаимодействие «липких» концов дезоксигемоглобина S с комплементарными им участками другой молекулы дезоксигемоглобина S при образовании длинных агрегатов
Рис.52. Ассоциация молекул дезоксигемоглобина S
рилл (рис.52), деформирующих структуру мембран эритроцитов, придавая им форму серпа (рис.53).
Рис.53. Эритроциты крови больного серповидноклеточной анемией
«Серповидные» эритроциты плохо проходят через капилляры тка- ней, увеличивают вязкость крови, нарушая ее циркуляцию; закупоривают сосуды, создавая местную гипоксию, что повышает образование гемоглобина Ѕ и продолжает деформацию эритроцитов. Некоторые эрит- роциты остаются необратимо серповидными и разрушаются. Нарушение доставки О2 в ткани вызывают боли и некроз клеток в данной области. Через некоторое время пониженное кровоснабжение приводит к некрозу органов, например селезенки, и ее атрофии, и, как следствие, к возник- новению заболевания, получившего название серповидно-клюточнойанемии.Это первый описанный пример молекулярной болезни, которая наследуется как рецессивное заболевание. Почти все замены аминокислот на поверхности гемоглобина безвредны; гемоглобин Ѕ – редкое исключение.
2. Изменение аминокислотного остатка в области активного центра.Между гемом и белковой частью гемоглобина существует около 60 межатомных неполярных контактов. Мутации, нарушающие эти контакты, изменяют структуру активного центра. В этом случае в дефектной субъединице не происходит связывание О2 и это приводит к возникно- вению анемий, заболеваний причиной которых является дефицит О2:
а. Замена в гене α- или β-цепи гистидинов (Гис Е7 и Гис F8) на тирозин. В результате Fе2+ окисляется до Fе3+, не способного к связыванию О2 (рис.54). Гем с окисленным Fе3+ называется ферри-гемом, а гемоглобин, содержащий 2 ферри-гемма, называется метгемоглобином или гемогло- бином М. Если изменение затрагивает 2 цепи, то гемоглобин может переносить только 2 молекулы О2 и развивается заболевание, связанное с дефицитом О2 – цианоз, если все 4 цепи, то это приводит к летальном исходу.
Рис.54. Замена проксимального гистидина (F8) тирозином, приводящая к образованию гемоглобина М
б. Замена фенилаланина СД1 (гидрофобная аминокислота) на серин (гидрофильная аминокислота) (рис.55). Такой гемоглобин называется гемоглобином Хаммерсмита. В результате этой замены нарушается связывание глобина с гемом. В гидрофобный «карман», где находятся гем, начинает проникать вода, из-за присутствия там серина, и окислять Fе2+ до Fе3+. Образуется ферри-гем, в результате чего развиваетсяанемия.
в. В нормальных гемоглобинах в месте пересечения двух α-спиралей В и Е н аходятсяглицин, у которого радикалом является водород и поэтому две спирали плотно прилегают друг к друг. Вгемоглобине Ривердейла-Бронкса (мутант гемоглобина А) вместо глицина в положении В6 нахо- дятсяаргининс объемным радикалом, который не помещается в узком пространстве, что меняет конформацию молекулы и она становится неста- бильной. Это приводит к разрушению эритроцита и развитию несфероцитарных гемолитических анемий.
Рис.55. Гемоглобин Хаммерсмита
3. Мутации генов α- и β-цепей гемоглобина, затрагивающие разные этапы синтеза этого белка, приводят к понижению скорости трансляции и полному её прекращению. Это становится причиной развития тяжелых форм анемии, известных под названием талассемия. Различают α- и β-талассемии. Молекулярными механизмами возникновения талассемий являются: делеция α-глобинового гена; нестабильность мRНК (замена стоп-кодона в α- цепи на кодирующий кодон приводит к синтезу удлиненной (172 остатка вместо 141 в норме) цепи, которая делает мутантную мRНК чувствительной к действию нуклеаз); нарушение инициации цепей (некоторые β-талассемии возникают в результате дефекта 5ʹ–нетранслируемой области); преждевременная терминация цепи (замена одного нуклеотида в кодоне лицина ААГ приводит к образованию стоп-кодона УАГ в 17 положении) и т.д.
Дата добавления: 2015-06-04; Просмотров: 1241; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Рекомендуемые страницы:
Читайте также:
Раздел I. Молекулярная генетика
Таблица генетического кода (по С.Е. Бреслеру, 1963) | |
Аминокислота | Предполагаемая структура кодирующего триплета информационной РНК |
Глицин | ГУГ |
Аргинин | ГУЦ |
Валин | УУГ |
Гистидин | АУЦ |
Изолейцин | УУА |
Цистеин | ГУУ |
Лейцин | УАУ, УУЦ, УГУ |
Пролин | ЦУЦ, УЦЦ |
Фенилаланин | УУУ |
Аланин | ЦУГ |
Метионин | УГА |
Тирозин | АУУ |
Триптофан | УГГ |
Серин | ЦУУ УЦУ |
Треонин | УЦА |
Лизин | АУА |
Глутаминовая кислота | АУГ |
Глутамин | УЦГ |
Аспарагиновая кислота | ГУА |
Аспарагин | ЦУА, УАА |
Исследование роли ДНК и РНК в передаче наследственных свойств и установление схемы биосинтеза белка и его регуляции позволяет анализировать наследственность
на молекулярном урввне. Ген в конечном итоге – это участок ДНК. Малейшее изменение структуры ДНК ведет к изменениям белка-фермента, что в свою очередь изменяет
цепь биохимических реакций в организме, определяющих тот или иной признак, или серию признаков. Таким образом, признак зависит от характера биохимической реакции,
реакция управляется белком-ферментом, строение белка зашифровано в ДНК посредством специфического чередования азотистых оснований в цепи. Во время синтеза белка
чередование азотистых оснований ДНК копирует информационная РНК (транскрипция). Затем на рибосоме транспортные РНК расшифровывают эту “запись”, расставляя
поочередно аминокислоты соответственно триплетам азотистых оснований (трансляция).
Зная структуру белка-фермента, можно расшифровать строение ДНК, и наоборот,
зная изменения в ДНК, можно предусмотреть изменения в структуре белка. Например, если цепь ДНК, кодирующая какой-то полипептид, начинается: аденин – аденин –
цитозин – гуанин – аденин – тимин (ААЦГАТ), то информационная РНК снимает копию следующим образом: урацил – урацил – гуанин – цитозин – урацил – аденин (УУГЦУА).
Сопоставляя с таблицей генетического кода, можно увидеть, что первым трем азотистым основаниям информационной РНК соответствует аминокислота валин, следующим трем
основаниям – аспарагин. Следовательно, полипептид будет начинаться с аминокислот валин – аспарагин.
Предлагаемые задачи рассчитаны на расшифровку структуры белка по известным изменениям в ДНК и обратный анализ с помощью таблицы кодирования аминокислот.
Задачи
- Полипептид состоит из следующих друг за другом расположенных аминокислот: валин – аланин – глицин – лизин – триптофан – валин – серии – глутаминовая
кислота. Определите структуру участка ДНК, кодирующего вышеуказанный полипептид
[показать] - Полипептид состоит из следующих аминокислот: аланин – цистеин – гистидин – лейцин – метионин – тирозин. Определите структуру участка ДНК, кодирующего эту полипептидную цепь.
- Аспарагин – глицин – фенилаланин – пролин – треонин – аминокислоты последовательно составляют полипептид. Определите структуру участка ДНК, кодирующего данный полипептид.
- Первые 10 аминокислот в цепи В инсулина: фенилаланин – валин – аспарагиновая кислота – глутамин – гистидин – лейцин – цистеин – глицин – серии – гистидин.
Определите структуру участка ДНК, кодирующего эту часть цепи инсулина
[показать] - Начальный участок цепи A инсулина представлен следующими пятью аминокислотами: глицин – изолейцин – валин – глутамин – глутамин.
Определите участок ДНК, кодирующий эту часть цепи инсулина
[показать] - В цепи рибонуклеазы поджелудочной железы один из полипептидов имеет следующие аминокислоты: лизин – аспарагиновая кислота – глицин – треонин – аспарагиновая
кислота – глутаминовая кислота – цистеин. Определите информационную РНК, управляющую синтезом указанного полипептида. - Одна из цепей рибонуклеазы поджелудочной железы состоит из следующих 14 аминокислот: глутамин – глицин – аспарагиновая кислота – пролин – тирозин – валин –
пролин – валин – гистидин – фенилаланин – аспарагин – аланин – серии – валин. Определите структуру участка ДНК, кодирующего эту часть цепи рибонуклеазы
[показать] - Одна из цепей глюкагона имеет следующий порядок аминокислот: треонин – серии – аспарагин – тирозин – серии – лизин – тирозин. Определите строение участка ДНК, кодирующего эту часть цепи глюкагоиа.
- Участок молекулы ДНК, кодирующий часть полипептида, имеет следующее строение: АЦЦАТТАЦЦАТГАА. Определите последовательность аминокислот в полипептиде
[показать] - При синдроме Фанкони (нарушение образования костной ткани) у больного с мочой выделяются аминокислоты, которым соответствуют следующие триплеты
информационной РНК: АУА, ГУЦ, АУГ, УЦА, УУГ, УАУ, ГУУ, АУУ. Определите, выделение каких аминокислот с мочой характерно для синдрома Фанкони
[показать] - У человека, больного цистинурией (содержание в моче большего, чем в норме, числа аминокислот) с мочой выделяются аминокислоты, которым соответствуют
следующие триплеты информационной РНК: ЦУУ, ГУУ, ЦУГ, ГУГ, УЦГ, ГУЦ, АУА. У здорового человека в моче обнаруживается аланин – серии – глутаминовая кислота и
глицин. Выделение каких аминокислот с мочой характерно для больных цистинурией? Напишите триплеты, соответствующие аминокислотам, имеющимся в моче здорового
человека
[показать] - Как изменится структура белка, если из кодирующего его участка ДНК – ГАТАЦТТАТАААГАЦ удалить пятый и тринадцатый (слева) нуклеотиды?
[показать] - Какие изменения произойдут в строении белка, если в кодирующем его участке ДНК – ТААЦАГАГГАЦТААГ между 10 и 11 нуклеотидом включен цитозин, между 13 и 14 –
тимин, а на конце рядом с гуанином прибавился еще один гуанин? - Участок молекулы ДНК, кодирующий полипептид, имеет в норме следующий порядок азотистых оснований: АААААЦЦАТАГАГАГААГТАА. Во время репликации третий слева
аденин выпал из цепи. Определите структуру полипептидной цепи, кодируемой данным участком ДНК, в норме и после выпадения аденина. - Участок цепи белка вируса табачной мозаики состоит из следующих аминокислот: серии – глицин – серии – изолейцин – треонин – пролин – серин. В результате
воздействия на информационную РНК азотистой кислотой цитозин РНК превращается в гуанин. Определите изменения в строении белка вируса после воздействия на РНК
азотистой кислотой
[показать] - Четвертый пептид в нормальном гемоглобине (гемоглобин А) состоит из следующих аминокислот: валин – гистидин – лейцин – треонин – пролин – глутаминовая кислота
– глутаминовая кислота – лизин.- У больного с симптомом спленомегалии при умеренной анемии обнаружили следующий состав 4-го пептида; валин – гистидин – лейцин – треонин – пролин – лизин – глутаминовая кислота – лизин. Определите изменения, произошедшие в ДНК, кодирующей 4-й пептид гемоглобина, после мутации.
- У больного серповидноклеточной анемией состав аминокислот 4-го пептида гемоглобина следующий: валин – гистидин – лейцин – треонин – пролин – валин – глутаминовая
кислота – лизин. Определите изменения в участке ДНК, кодирующем 4-й пептид гемоглобина, приведшие к заболеванию.
- В четвертом пептиде нормального гемоглобина А 6-я и 7-я позиция представлена двумя одинаковыми аминокислотами: глутаминовая кислота – глутаминовая кислота.
У других форм гемоглобина произошли следующие замещения:Форма гемоглобина Аминокислота в позиции 6 7 S Валин Глутаминовая кислота G Лизин Глутаминовая кислота G Глутаминовая кислота Глицин Джоржтауп Глутаминовая кислота Лизин Определите структуру участков ДНК, кодирующих 6-ю и 7-ю позицию четвертого пептида для всех пяти форм гемоглобина.
- В настоящее время известно много редких форм гемоглобина, у которых в результате мутаций произошло замещение той или иной аминокислоты в α-цепи.
- У гемоглобина Торонто 5-я аминокислота аланин заменена аспарагином, у гемоглобина Париж 6-я аминокислота аланин заменена аспарагином.
Определите участок ДНК, кодирующий 5-ю и 6-ю аминокислоты α-цепи, для нормального гемоглобина А и для гемоглобинов Торонто и Париж
[показать] - У гемоглобина Интерлакен-Оксфорд 15-я аминокислота глицин заменена аспарагином, у гемоглобина J 16-я аминокислота лейцин заменена глутамином.
Определите участок ДНК, кодирующий 15-ю и 16-ю аминокислоты α-цепи, у нормального гемоглобина и у обоих измененных
[показать]
- У гемоглобина Торонто 5-я аминокислота аланин заменена аспарагином, у гемоглобина Париж 6-я аминокислота аланин заменена аспарагином.
- Известно 26 форм гемоглобина, у которых произошла замена той или иной аминокислоты в β-цепи (В. П. Эфроимсон, 1968). В таблице приведены некоторые
замещения. Напишите изменения в триплетах ДНК, приведших к изменениям гемоглобина.Форма гемоглобина Порядковый номер аминокислоты в цепи Аминокислотные замещения Токучи 2 Гистидин – тирозин Кушатта 22 Глутамин – аланин Айбадан 46 Глицин – глутамин Цюрих 63 Гистидин – аргинин Милуоки 67 Валин – глутамин Ибадан 87 Треонин – лизин Балтимор 95 Лизин – глутамин Кельн 98 Валин – метионин О-Аравия 121 Глутамин – лизин Хоп 136 Глицин – аспарагин Кенвуд 143 Гистидин – аспарагин - В цепи А инсулина лошади аминокислоты в позиции 6-11 имеют следующий состав: цистеин – цистеин – треонин – глицин – изолейцин – цистеин. У быка в этой цепи
8-ю позицию занимает аланин, 9-ю – серин, 10-ю – валин. Определите строение участка ДНК, кодирующего эту часть цепи инсулина, у лошади и быка. - Начальный участок цепи В инсулина представлен следующими 10 аминокислотами: фенилаланин – валин – аспарагиновая кислота – глутамин – гистидин – лейцин –
цистеин – глицин – серин – гистидин. Определите количественные соотношения аденин + тимин, гуанин + цитозин в цепи ДНК, кодирующей этот участок инсулина
[показать] - Инсулин состоит из А и В цепи, включающих 51 аминокислоту. Однако состав инсулина лошади, быка и барана несколько отличен. Число различных аминокислот в
Аминокислота Число аминокислот а инсулине животных бык баран лошадь Глицин 4 5 5 Валин 5 5 4 Изолейцин 1 1 2 Лейцин 6 6 6 Фенилаланин 3 3 3 Тирозин 5 5 5 Серин 3 2 2 Треонин 1 1 2 Лизин 1 1 1 Аргинин 1 1 1 Гистидин 2 2 2 Цистеин 6 6 6 Пролин 1 1 1 Аланин 3 3 2 Глутамин 6 6 6 Аспарагиновая кислота 3 3 3 Определите количественные отношения аденин + тимин и гуанин + цитозин в цепи ДНК, кодирующей инсулин, у трех видов животных.
- Четвертый пептид гемоглобинов включает 8 аминокислот. Количественный состав их в различных формах гемоглобина приведен ниже.
Аминокислота Число аминокислот в пептиде гемоглобина А S C G Джоржтаун Валин 1 2 1 1 1 Гистидин 1 1 1 1 1 Лейцин 1 1 1 1 1 Треонин 1 1 1 1 1 Пролин 1 1 1 1 1 Глутаминовая кислота 2 1 1 1 1 Лизин 1 1 2 1 2 Глицин 0 0 0 1 0 Определите количественные соотношения аденин + тимин и гуанин + цитозин в участке ДНК, кодирующем 4-й полипептид; для пяти форм гемоглобина.
- Рибонуклеаза поджелудочной железы быка имеет следующий количественный состав аминокислот:
Лизин 10 Тирозин 5 Глутамин 6 Цистеин 8 Аргинин 4 Пролин 4 Изолейцин 3 Аспарагиновая кислота 12 Аланин 12 Треонин 10 Лейцин 2 Серин 15 Валин 8 Глутаминовая кислота 7 Метионин 4 Фенилаланин 3 Аспарагин 4 Гистидин 4 Глицин 3 Определите количественные соотношения аденин + тимин и гуанин + цитозин в участке цепи ДНК, кодирующем рибонуклеазу.
- Исследования показали, что 34% общего числа нуклеотидов данной информационной РНК приходится на гуанин, 18%-на урацил, 28% – на цитозин и 20% – на аденин.
Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является вышеуказанная информационная РНК. - Известно, что расстояние между двумя соседними нуклеотидами в спирализованной молекуле ДИК, измеренной вдоль оси спирали, составляет 34 x 1011 м.
Какую длину имеют гены, определяющие молекулу нормального гемоглобина, включающего 287 аминокислот? - Какую длину имеет молекула ДНК, кодирующая инсулин быка, если известно, что молекула инсулина быка имеет 51 аминокислоту, а расстояние между двумя
соседними нуклеотидами в ДНК равно 34 x 1011 м?
Виртуальные консультации
На нашем форуме вы можете задать вопросы о проблемах своего здоровья, получить
поддержку и бесплатную профессиональную рекомендацию специалиста, найти новых знакомых и
поговорить на волнующие вас темы. Это позволит вам сделать собственный выбор на основании
полученных фактов.
Обратите внимание! Диагностика и лечение виртуально не проводятся!
Обсуждаются только возможные пути сохранения вашего здоровья.
Подробнее см. Правила форума
Последние сообщения
Реальные консультации
Реальный консультативный прием ограничен.
Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.
Заметки на полях
Нажми на картинку –
узнай подробности!
Новости сайта
Ссылки на внешние страницы
20.05.12
Уважаемые пользователи!
Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал,
запрашивающие оплату, требующие личные данные и т.д. Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.
Ссылки будут заменены на рабочие или удалены.
Тема от 05.09.08 актуальна!
Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на
нашем форуме
05.09.08
В настоящее время на сайте готовится полная
HTML-версия МКБ-10 – Международной классификации болезней, 10-я редакция.
Желающие принять участие могут заявить об этом на нашем форуме
25.04.08
Уведомления об изменениях на сайте можно получить через
раздел форума “Компас здоровья” – Библиотека сайта “Островок здоровья”