Железо и кальций гемоглобин

Железо и кальций гемоглобин thumbnail

Качество мультивитаминов определяется сбалансированностью состава и эффективностью усвоения из них биологически активных компонентов. Все витамины и большинство необходимых минералов играют важную роль в биохимических процессах, взаимодействуя с другими биологически активными веществами. Взаимодействуют они и между собой: во время хранения, в процессе высвобождения из лекарственной формы, при всасывании (конкурируют за переносчики), на метаболических путях в организме (проявляют синергизм или антагонизм).

Многочисленные исследования показали, что кальций существенно снижает всасывание железа в желудочно-кишечном тракте.
Предотвратить антагонистические взаимодействия кальция и железа позволяет раздельный прием кальцийсодержащих продуктов (молоко, зеленые овощи) и богатой железом пищи (мясо, печень). А при выборе витаминно-минеральных препаратов следует отдавать предпочтение тем, в которых кальций и железо разделены.
Дефицит минералов и способы его коррекции. По данным НИИ питания, дефицит витаминов и минералов выявлен более чем у 50% обследованного населения. Тому причиной не только то, что стандартный рацион взрослого человека содержит лишь около 70% необходимого количества микронутриентов (54% железа, 40% витамина С, 65% витамина В1), но и ряд эколого-геохимических факторов, ухудшающих ситуацию. Так, к развитию дефицита ведут загрязнение среды и вредные привычки (повышенный расход антиоксидантов), а также некоторые геохимические особенности (низкое содержание йода в воде). Современные научные данные убедительно свидетельствуют о возможных негативных последствиях дефицита витаминов и минералов. В создавшихся условиях безальтернативным способом профилактики и лечения полигиповитаминоза и полигипомикроэлементоза становится регулярный прием комплексных витаминно-минеральных препаратов.
В продаже имеется большое количество препаратов, содержащих практически полный набор важнейших микронутриентов. Но порой трудно остановить выбор на каком-то определенном препарате, так как они имеют сходный состав (10-15 витаминов и витаминоподобных веществ, 5-15 минералов) и не отличаются по форме выпуска. Более того, субстанции (витамины, соли металлов) для производства витаминно-минеральных комплексов закупаются у одних и тех же поставщиков.
Все витамины и большинство необходимых минералов поступают в организм в микродозах, но играют важную роль в биохимических процессах, проявляя свою фармакологическую активность, взаимодействуя с другими биологически активными веществами.
Особенно часто конкурентный вид взаимодействия имеет место для минералов, поскольку применяемые в виде химически родственных производных они используют общие механизмы транспорта во внутреннюю среду.
Усвоение кальция и железа в организме
Краткие сведения по физиологической роли и всасыванию кальция и железа представлены в таблице 1.
Кальций является самым распространенным минералом в организме человека. Он играет важную роль как во внутри- так и во внеклеточных процессах: в сократительной функции сердечной и скелетных мышц, нервной проводимости, регуляции активности ферментов, действии многих гормонов. Является кофактором активации ряда ферментных комплексов в сложных многоэтапных процессах свертывания крови. Необходим для роста и формирования костей. Поэтому особенно велика потребность в кальции у детей и беременных женщин.
В организме взрослого мужчины содержится примерно 1200 г кальция. 99% этого количества сосредоточено в костях и зубах, остальной кальций распределен во внутриклеточной и внеклеточной жидкостях. С пищей человек ежедневно потребляет около 1 г кальция. В кислой среде желудка соли кальция диссоциируют, 20-40% макроэлемента всасывается. Основным местом абсорбции являются 12-перстная и тощая кишки, но некоторое количество этого элемента всасывается в подвздошной и толстой кишках. Доступность кальция для абсорбции зависит от многих диетических факторов, включая присутствие фосфатов, жирных кислот и фитатов, которые связывают кальций и делают его недоступным для абсорбции. Всасывание в кишечнике осуществляется за счет активного транспорта против электрохимического градиента, а также за счет пассивной диффузии (когда содержание кальция в пище и, следовательно, его концентрация в просвете кишки чрезмерно возрастают). Через мембрану клетки реабсорбируемый кальций переносится при помощи зависимого от витамина D кальций-связывающего белка кальбиндина. Витамин D способствует синтезу кальбиндина в организме, а следовательно, и усвоению кальция. Именно поэтому препараты кальция обычно содержат и витамин D. Чаще всего в производстве пищевых добавок и витаминно-минеральных комплексов используются такие соли кальция, как карбонат, глюконат, цитрат и фосфат [2, 3].
Железо – один из самых изученных и исследуемых микроэлементов. Дефицит железа – наиболее часто встречаемый пищевой дефицит в мире, затрагивающий в основном детей в активной фазе роста и женщин детородного возраста.
Потребности в железе определяются возрастом, полом и физиологическим статусом. Повышенные потребности в железе грудных детей и беременных женщин обусловлены необходимостью поддерживать рост и формирование новых тканей. Потребности в железе у небеременных женщин в значительной мере определяются кровопотерями во время менструации.
В теле здорового мужчины содержится в среднем 3,8 г железа, а в теле женщины – 2,3 г. В женском организме практически отсутствуют запасы железа. Железо в человеческом организме распределено между активным пулом и неактивным – депо. Активный пул содержит в гемоглобине в среднем около 2100-2500 мг железа, в миоглобине – 200-300 мг, в тканевых ферментах – 150 мг и транспортируемая фракция – 3 мг.
Железо является составляющей гемоглобина эритроцитов, переносящих кислород от легких к тканям, и миоглобина в мышечной ткани, который накапливает кислород, необходимый для работы мышц. Железо обладает несколькими особыми свойствами, которые отличают его от большинства других пищевых веществ. Всасывается лишь малая часть общего количества железа, находящегося в пище (из 10-20 мг, поступающих ежедневно с пищей, всасывается не более 10%). Из слизистой оболочки кишечника железо транспортируется в кровь с помощью активных транспортных механизмов клеток. Этот процесс осуществляется только при нормальной структуре клеток слизистой, которую поддерживает фолиевая кислота [4]. Транспорт через клетки слизистой оболочки кишечника осуществляется как путем простой диффузии, так и при участии специального белка-носителя (муцин-b3-интегрин, DMT1). Эти белки наиболее интенсивно синтезируются при анемии, что обеспечивает лучшее всасывание железа. Белок переносит железо только один раз, следующие молекулы железа несут новые молекулы белка-переносчика. На их синтез нужно 4–6 часов, поэтому более частый прием препаратов железа не увеличивает его всасывания, а увеличивает количество невсосавшегося железа в кишечнике и опасность возникновения побочных эффектов [5].
Железо в пищевых источниках существует в двух видах: гемовое (ГЖ) и негемовое железо (НЖ). Гемовое железо присутствует в гемоглобине и миоглобине мяса (особенно в печени) и рыбе. Средний показатель всасывания гемового железа из мяса составляет около 25%. Однако большая часть пищевого железа присутствует в негемовой форме. Негемовое железо представлено в основном в продуктах растительного и молочного происхождения и составляет свыше 85% получаемого организмом с пищей железа. Всасывание негемового железа намного ниже, чем гемового, и зависит от общего содержания железа в организме конкретного человека: больше негемового железа всасывается у людей, у которых его содержание снижено, меньше – у людей, чей организм насыщен железом. На усвоение НЖ сильное влияние оказывает его растворимость в верхней части тонкого кишечника. В свою очередь, эта растворимость зависит от того, как пища в целом влияет на растворимость железа [6]. Активаторы и ингибиторы, присутствующие в пище, часто оказывают определяющее значение на количество всосавшегося железа [6,4].
Количество всасываемого железа в пище зависит от соотношения между ингибиторами и промоторами. Поскольку взаимодействие происходит в желудочно-кишечном тракте, тормозящее или ускоряющее влияние пищевых компонентов на всасывание железа сильнее всего при потреблении этих компонентов в одном приеме пищи. Одним из наиболее сильных стимуляторов всасывания железа является витамин С, находящийся в свежих овощах и фруктах. Также ускоряют всасывание негемового железа ферментированные продукты (например, квашеная капуста). В присутствии кислоты образуются комплексы с железом, которые предотвращают образование плохо усвояемого фитата железа. Кроме того, некоторые виды помола и термической обработки понижают содержание фитата в основных пищевых продуктах растительного происхождения и тем самым помогают повысить всасывание негемового железа.
Самыми сильными ингибиторами всасывания железа являются кальций, фитаты и полифенолы. Фитаты представляют собой форму хранения фосфатов и минералов, присутствующих в зернах злаковых растений, овощах, семенах и орехах. Они активно тормозят всасывание железа, действуя при этом в прямой зависимости от дозы.
Феноловые соединения существуют почти во всех растениях и являются частью их системы защиты против насекомых и животных. Несколько феноловых соединений связывают железо и таким образом препятствуют его всасыванию. Такие соединения содержатся в чае, кофе и какао, а также во многих овощах и нескольких травах и специях.
Установлено, что чай снижает всасывание железа из пищи на 62% по сравнению с водой. Тормозящее действие чая вызывает содержащийся в нем полифенол таннин.
Запасы железа регулируются главным образом путем изменений во всасывании. К синдрому недостаточности всасывания, в том числе железа, может привести повреждение слизистой оболочки кишечника. Это может быть особенно выражено при глютенчувствительной целиакии, которая, если ее не лечить, часто сопровождается железодефицитной анемией. Распространенной причиной недостаточности железа вследствие мальабсорбции являются также гастрэктомия и резекция желудка, хронические воспалительные заболевания кишечника. Во время системных инфекций происходит острое снижение всасывания железа, сопровождающееся перемещением железа из кровообращения в печень. Это естественный защитный механизм организма в периоды инфекции, направленный на снижение роста вредных бактерий, которым для размножения требуется железо.
В норме соотношение поступления железа с пищей и его потерь таково, что даже очень небольшое снижение поступления или увеличение потерь может привести к его дефициту. При значительной хронической кровопотере (независимо от ее причины) количество теряемого железа всегда превосходит то, которое попадает в организм из пищи. В результате неизбежно истощение запаса железа и его дефицит. Причинами железодефицитной анемии также могут быть внутрисосудистый гемолиз, анкилостомидозы, кровопускание по поводу эритремии, гемодиализ [4].
Не только патологические состояния ведут к развитию железодефицитной анемии. Достаточно часто причиной дефицита железа являются физиологические состояния – быстрый рост (особенно грудных детей и подростков), донорство, гиперменорея, беременность. Именно в этих случаях профилактический прием рационально составленных витаминно-минеральных комплексов может сыграть решающую роль в сохранении здоровья.
Экспериментальные данные
по взаимному влиянию кальция и железа
Клинические исследования показали, что совместный прием кальция и железа ведет к уменьшению всасывания железа. Данные различных авторов свидетельствуют о том, что этот эффект зависит и от формы выпуска препаратов кальция, и от количества употребляемого кальция, и от общего состава пищи. Так, одним из ингибиторов всасывания железа является фосфат кальция [7,8].
В ходе эксперимента 34 человека получали физиологические количества солей кальция и фосфорной кислоты в виде монопрепаратов или в виде смеси [7]. В то время как в первом случае достоверно детектировать изменения в поглощении негемового железа не удалось, во втором случае оказалось, что всасывание железа уменьшилось на 20%. По другим данным, рекомендуется разделять во времени прием молочных продуктов и железосодержащей пищи, поскольку всасывание железа при этом снижается на 50-60% [9]. Особенно это важно для групп людей с физиологически повышенной потребностью в железе – детей и женщин детородного возраста.
Группа из 12 физически здоровых женщин получала препараты, содержащие либо кальций с железом, либо только железо в количестве, в два раза меньшем, чем в первом препарате [10]. Исследования содержания железа в крови показало, что всасывание его из обоих препаратов было практически одинаковым. Авторы считают, что этот эффект связан с отсутствием во втором препарате кальция.
Ранее также было показано, что из монопрепарата, содержащего 65 мг железа, усваивалось 12% минерала, в то время как из полиминерального комплекса усваивалось только 3-5% [11]. Снижение содержания в препарате карбоната кальция и оксида магния привело к возрастанию всасывания железа до 7%. Подобные данные были получены в экспериментах, где в группу наблюдения входили беременные женщины, принимавшие пищевые добавки с различным содержанием кальция [12].
С помощью метода двойных меченых изотопов сравнивали поглощение железа из коровьего и человеческого молока [13]. Оказалось, что из коровьего молока усваивается только 19,5±17,3% железа, в то время как для человеческого молока этот показатель составляет 48,0 ± 25,5%. Поскольку содержание кальция в человеческом молоке в несколько раз ниже, чем в коровьем, авторы предположили, что именно этим обусловлена столь значительная разница. И действительно, при добавлении хлорида кальция к человеческому молоку в таком количестве, что его содержание стало сравнимо с содержанием кальция в коровьем молоке, поглощение из него железа упало почти в два раза.
Предотвратить взаимное влияние кальция и железа позволяет раздельный по времени прием препаратов [16]. Употребление молока и сыра на завтрак (около 340 мг кальция) не влияло на всасывание железа из гамбургера, съеденного спустя 2-4 часа. Этот эффект наблюдался для группы из 21 человека с помощью метода двойных радиоизотопов. Таким образом, авторы рекомендуют разделять прием кальция и кальцийсодержащих продуктов и богатой железом пищи (мяса, рыбы, употребляемых обычно в обед). Подобные же выводы приводятся и в других работах [14,15].
Причины снижения кальцием абсорбции железа до конца не ясны. Различные авторы высказывают на этот счет различные гипотезы. Так, по данным об ингибировании усвоения железа фосфатом кальция авторы предполагают, что возможно образование тройного нерастворимого комплекса между железом, кальцием и фосфат-анионом [7].
Ученые США попытались разрешить проблему взаимного влияния кальция и железа путем создания двухслойной таблетки. Ядро такой таблетки состоит из железа, внешний слой – из кальция. Оболочка таблетки растворима в желудке, поэтому всасывание кальция происходит в первые два часа после приема. Железо высвобождается и всасывается в последующие 6 часов, причем ядро таблетки растворяется за два часа. Такое изобретение действительно позволяет разделить кальций и железо по времени и месту всасывания (в верхнем и нижнем участке ЖКТ). Но необходимо учитывать, что среднее время прохождения пищи через желудок – 1 час, а через тонкий кишечник – 4 часа. Затем пища попадает в толстый кишечник, в котором всасывания витаминов и минералов уже не происходит. Поскольку после растворения оболочки в течение двух часов будет растворяться ядро, железо из такой таблетки будет иметь всего два часа на всасывание.
Таким образом, не оставляет сомнений необходимость учитывать ингибирующее действие кальция на всасывание железа как при совместном потреблении продуктов, содержащих кальций и железо, так и при выборе витаминно-минеральных комплексов, отдавая предпочтение тем, в которых эти минералы находятся в разных таблетках.

Литература
1. Н.А. Коровина. Витамино-минеральная недостаточность// РМЖ, 2003. 11 № 25.
2. Гусев Н.Б. Внутриклеточные Ca-связывающие белки. Часть1. Классификация и структура // Соросовский образовательный журнал. 1998. 5, 10-16.
3. Лашутин С.В. Фосфорно-кальциевый обмен в норме. // Диализный альманах. Под ред.: Е.А.Стецюка, С.В. Лашутина, В.Б. Чупрасова. СПб.: «ЭЛБИ-СПб». 2005. 244-271.
4. По материалам сайта Медицина-2000. https://www.med2000.ru/ artik270/ voz26.htm.
5. А.В.Мурашко, Т.С.Аль-Сейкал. Железодефицитные состояния при беременности. // Гинекология. 2004. 06 № 3.
6. Ziegler E.E., Filer L.J. (editors) ILSI Press, Washington DC, seventh edition. «Present knowledge in Nutrition». 1996.
7. Monsen E.R., Cook J.D. Food iron absorption in human subjects. V. Effects of the major dietary constituents of semisynthetic meal. // Am J Clin Nutr. 1979. 32(4), 804-8.
8. Charlton R.W., Bothwell T.H. Iron absorption. // Annu Rev Med. 1983. 34, 55-68.
9. Hallberg L., Rossander-Hulten L., Brune M., Gleerup A. Calcium and iron absorption: mechanism of action and nutritional importance. // Eur J Clin Nutr. 1992. 46(5), 317-27.
10. Ahn E., Kapur B., Koren G. Iron bioavailability in prenatal multivitamin supplements with separated and combined iron and calcium. // J Obstet Gynaecol Can. 2004. 26(9), 809-14.
11. Seligman P.A., Caskey J.H., Frazier J.L., Zucker R.M., Podell E.R., Allen R.H. Measurements of iron absorption from prenatal multivitamin—mineral supplements.// Obstet Gynecol. 1983. 61(3),356-62.
12. Babior B.M., Peters W.A., Briden P.M., Cetrulo C.L.. Pregnant women’s absorption of iron from prenatal supplements // J Reprod Med. 1985 30(4), 355-7.
13. Bonnar J., Goldberg A., Smith J.A.. Do pregnant women take their iron? // Lancet. 1969. 1(7592), 457-8.
14. Cook J.D., Dassenko S.A., Whittaker P. Calcium supplementation: effect on iron absorption. // Am J Clin Nutr. 1991. 53(1), 106-11.
15. NIH Consensus conference. Optimal calcium intake. NIH Consensus Development Panel on Optimal Calcium Intake. JAMA. 1994. 272(24), 1942-8.
16. Gleerup A., Rossander-Hulten L., Hallberg L. Duration of the inhibitory effect of calcium on non-haem iron absorption in man // Eur J Clin Nutr. 1993 47(12), 875-9.

Источник

Содержание железа в организме человека составляет в среднем 4,2 г. Около 75% от его общего количества входит в состав гемоглобина эритроцитов, которые переносят кислород от легких к тканям, 20% железа является резервным (костный мозг, печень, макрофаги), 4% входит в состав миоглобина, около 1% содержится в дыхательных ферментах, катализирующих процессы дыхания в клетках и тканях, а также в других ферментативных структурах. Железо осуществляет свою биологическую функцию, находясь в составе биологически активных соединений, преимущественно ферментов. Железосодержащие ферменты выполняют следующие основные функции:

  • транспорт электронов (цитохромы);
  • транспорт и депонирование кислорода (гемоглобин, миоглобин);
  • участие в формировании активных центров;
  • окислительно-восстановительные функции (оксидазы, гидроксилазы, супероксиддисмутазы и др.);
  • транспорт и депонирование железа в плазме крови (трансферрин, ферритин).

Железо обладает несколькими особыми свойствами, которые отличают его от других биологически активных ионов и веществ.

В организме человека нет никаких специальных механизмов для выведения железа. В основном железо выделяется через кожу и кишечник (I. Guinote et al., 2006). Кроме этого, оно теряется также с волосами, ногтями, мочой и потом. Общее количество выделяемого железа у здорового человека (мужчины) составляет около 1 мг в сутки. Такое же количество в норме усваивается из потребляемой пищи (Linder, 1991). Отличие составляет менструальный период, когда потребление должно составлять около 4 мг железа в день. Таким образом, концентрация элемента в сыворотке крови зависит от его всасывания в желудочно-кишечном тракте, от накопления в селезенке, костном мозге и скелетных мышцах (миоглобин), а также от синтеза и распада гемоглобина и выделения его из организма. В пище железо может присутствовать в двух видах — гемовое и негемовое, которые характеризуются разными механизмами всасывания. Гемовое железо (порфириновое кольцо с атомом железа в центре, связанное с 4 атомами азота) в желудочно-кишечном тракте освобождается от белковых цепей и в виде металлопорфирина всасывается энтероцитами кишечника. Там происходит неспецифическое эндосомальное проникновение гема в клетку с последующим его разрушением. Далее, с помощью белковой транспортной системы IREG1, ионы железа окисляются до трехвалентного железа, связываются с трансферрином и покидают энтероцит, выходя в ток крови (Linder et al., 2006). В плазме крови железо перемещается в соединении с этим же белком, который выполняет как функцию депо, так и функцию переносчика. Наличие свободных ионов железа в крови не характерно и является патологией. Всасывание гемового железа происходит в пределах 15–50% (в среднем 20–30%).

Негемовое двухвалентное железо в желудке связывается белком гастроферрином и транспортируется в кишечник. Попадая в двенадцатиперстную кишку и проксимальную часть тощей кишки, железо проникает в энтероцит с помощью неспецифического ионного транспортера DMT1 (Divalent metal transport). Этот протонзависимый переносчик также участвует в транспорте многих других двухвалентных катионов, таких как Mn, Сu и Zn (M. Arredondo еt al., 2006). Кроме того, показано, что этот переносчик может транспортировать и некоторые одновалентные ионы, такие как Cu+1, который образуется при действии аскорбата на Cu+2 (M. Linder et al., 2006). Таким образом, можно предположить, что в зависимости от концентрации этих ионов в диете или мультивитаминной таблетке возможна их конкуренция за транспортер DMT1. При этом имеются данные о том, что существует специфичность переносчика DMT1 по отношению к разным двухвалентным ионам, связанная с их расположением по ходу желудочно-кишечного тракта, что было показано путем транскрипции различных железонезависимых mRNA транспортера DMT1, и конкуренции за переносчик не существует.

В литературе описывается несколько механизмов транспортировки железа внутри энтероцита, основанные главным образом на экспериментах, проведенных на культуре ткани Caco2 (M. Linder et al., 2006). Согласно первой теории, двухвалентное железо, поступившее в энтероцит с помощью транспортера DMT1, доставляется посредством везикул с трансферрином (некоторые отводят ему роль внутриклеточного рецептора) или в свободном состоянии к базолатеральной мембране энтероцита, где присутствует другой транспортер — IREGI/ferroportin/MTP1 (Donovan et al., 2000). Этот транспортер окисляет двухвалентное железо до трехвалентного и транспортирует в кровь, где он соединяется с плазменным трансферрином. Согласно второй теории, внутри энтероцита железо транспортируется, по-видимому, в везикулах вместе с апотрансферрином, который путем эндоцитоза попадает из тока крови в энтероцит (эндо-/экзоцитоз) (Ma et al., 2002). Во время этой транспортировки двухвалентное железо окисляется до трехвалентного и путем экзоцитоза поступает через базилярную мембрану энтероцита в кровь. В этом процессе возможно участие уже упоминавшейся системы IREG. Согласно литературным данным, именно механизм транспорта железа через базолатеральную мембрану энтероцита в кровь является лимитирующим в процессе адсорбции железа (Roy and Enns, 2000). Усвоение неорганического двухвалентного железа обычно происходит в пределах 6–15%.

Негемовое трехвалентное железо может быть восстановлено с помощью ферриредуктазы до двухвалентного железа и усвоено с помощью DMT1. Восстановление трехвалентного железа сильно зависит от кислотности желудочного сока. Невосстановленное железо может всасываться с помощью специфической интегрин-мобифериновой системы IMP. Усвоение трехвалентного железа происходит наименее полно и редко превосходит 4%.

Количество железа, поступающего в эффекторную клетку, куда оно транспортируется с кровью, прямо пропорционально числу мембранных рецепторов. В клетке происходит высвобождение железа из трансферрина. Затем плазменный апотрансферрин возвращается в циркуляцию. Повышение потребности клеток в железе при их быстром росте или синтезе гемоглобина ведет к индукции биосинтеза рецепторов трансферрина и, напротив, при повышении запасов железа в клетке число рецепторов на ее поверхности снижается. Железо, высвободившееся из трансферрина внутри клетки, связывается с ферритином, который доставляет микроэлемент в митохондрии, где он включается в состав гема. Помимо синтеза гема, двухвалентное железо используется в митохондриях для синтеза железосерных центров. В организме человека происходит постоянное перераспределение железа. В количественном отношении наибольшее значение имеет метаболический цикл: плазма — красный костный мозг — эритроциты — плазма. Обычно 70% плазменного железа поступает в костный мозг. За счет распада гемоглобина в сутки высвобождается около 21–24 мг железа, что во много раз превышает поступление железа из пищеварительного тракта (1–2 мг/сут).

Существует выраженная обратная зависимость между обеспеченностью организма железом и его всасыванием в пищеварительном тракте. В основном всасывание железа происходит в двенадцатиперстной кишке и проксимальных отделах тощей кишки и отсутствует в подвздошной кишке.

Всасывание железа зависит от следующих причин: возраста, обеспеченности организма железом, состояния желудочно-кишечного тракта, количества и химических форм поступающего железа и прочих компонентов пищи. Для оптимального всасывания железа необходима нормальная секреция желудочного сока. Прием соляной кислоты способствует усвоению железа при ахлоргидрии. В таблице приведены основные вещества, содержащиеся в продуктах питания человека, которые могут активизировать или уменьшать всасывание железа, содержащегося в этих продуктах или мультивитаминной таблетке. Аскорбиновая кислота, восстанавливающая железо и образующая с ним хелатные комплексы, повышает доступность этого элемента так же, как и другие органические кислоты. Она является одним из наиболее сильных стимуляторов всасывания железа. Другим компонентом пищи, повышающим всасывание железа, является «фактор животного белка», в котором содержится миоглобин и гемоглобин. Улучшают всасывание железа простые углеводы: лактоза, фруктоза, сорбит, а также такие аминокислоты, как гистидин, лизин, цистеин, образующие с железом легковсасываемые хелаты.

Самыми сильными ингибиторами, блокирующими всасывание железа, являются фитаты и полифенолы. Фитаты представляют собой форму хранения фосфатов и минералов, присутствующих в зернах злаковых растений, овощах, семенах и орехах. Они активно тормозят всасывание железа, действуя при этом в прямой зависимости от дозы. Всасывание железа снижают такие напитки, как чай, содержащий таннин, а также другие полифенольные соединения, которые прочно связывают этот элемент. Феноловые соединения существуют почти во всех растениях и являются частью системы защиты против насекомых и животных. Поэтому чай применяют для профилактики повышенного усвоения железа у больных талассемией. Большое влияние на усвоение железа оказывают различные заболевания. Оно усиливается при недостаточности железа, при анемиях (гемолитической, апластической, пернициозной), гиповитаминозе В6 и гемохроматозе, что объясняется повышением эритропоэза, истощением запасов железа и гипоксией.

Из перечисленных веществ, которые могут уменьшать всасывание железа, особое внимание обращает на себя ион кальция. Кальций обладает высокой биологической активностью, в значительном количестве содержится в основных продуктах питания и, как правило, присутствует в одной мультивитаминной таблетке с железом.

Железо и кальций гемоглобин
Таблица. Активаторы и ингибиторы всасывания железа, содержащиеся в пищевом рационе человека

В связи с этим вопрос о возможном влиянии кальция на биодоступность железа изучается длительное время как в экспериментах на животных, так и в исследованиях на людях.

Необходимо отметить, что клеточные механизмы всасывания, т. е. поступления ионов железа и кальция из просвета кишечника в ток крови через энтероциты кишечника, различны. Многочисленными работами было показано, что в этом процессе участвуют различные клеточные транспортеры (J. Hoenderop et al., 2005). Кроме того, имеются данные о том, что кальций уменьшает поступление в организм как гемового (L. Hallberg, 1991), так и негемового железа. Все вместе указывает на то, что кальций может влиять на биодоступность железа, оказывая ингибирующее влияние либо на транспорт его в желудочно-кишечном тракте, либо на связывание с рецепторами, расположенными на апикальной мембране энтероцитов.

В экспериментах на изолированный кишечной петле в условиях in vivo на крысах было показано уменьшение всасывания железа из раствора FeCl2, вводимого непосредственно в петлю при добавлении кальция. Причем эффект зависел от абсолютной концентрации кальция в двенадцатиперстной кишке, а не от молярного соотношения Ca/Fe (Barton et al., 1983). Изучение влияния на клеточный транспорт железа различных солей, содержащих кальций, показало, что наибольший ингибирующий эффект вызывает СаСО3, в то время как эффекты СаSO4 и Na2CO3 присутствуют, но в меньшей степени (Prather, 1992). Эта кальциевая соль, добавленная в количестве 500 мг, способна уменьшить всасывание негемового железа, содержащегося в пищевых продуктах на 32% в случае потребления пищи, не содержащей дополнительные ингибирующие вещества, и на 42% при потреблении продуктов в сочетании с яйцами, кофе и др. (Сook et al., 1991). СaCO3 уменьшает также всасывание железа при совместном использовании их в одной таблетке. В этом случае 300 мг кальциевой соли при совместном употреблении с 37 мг железа, присутствующего в виде FeSO4, уменьшает всасывание железа на 15% (Seligman et al., 1983; Cook et al., 1991).

На добровольцах провели исследования по усвояемости железа при совместном употреблении с кальцийсодержащими продуктами. Усвоение железа определяли радиоизотопным методом с использованием Fe55 и Fe59. Здоровые женщины (21 чел.) потребляли в течение 10 дней дополнительное количество молока и сыра (~ 930 мг кальция в день). Это привело к снижению абсорбции железа на 30–50% (Hallberg, 1995). На основании полученных данных авторы предполагают, что ингибирование всасывания железа происходит на этапе «просвет кишечника — энтероцит».

В исследованиях на людях также изучалось влияние искусственных минеральных добавок: сульфата железа, цитрата и фосфата кальция и др. Работа была проведена на 61 здоровом испытуемом. Для оценки всасывания использовался также двойной радиоизотопный метод. При употреблении цитрата кальция (600 мг) абсорбция железа снижалась на 49%, фосфата — на 62% (Cook et al., 1991). Интересно, что в этом исследовании эффект от применения кальциевых добавок отмечался только на фоне употребления пищи. Вероятно, конкуренция между катионами возникала при заполненном кишечнике. Теоретически возможно, что высокие концентрации кальция могут изменять реологические свойства пищевого комка в просвете верхней части тонкого кишечника (Conrad et al., 1993). На людях также изучалось различие во влиянии кальция на потребление гемового и негемового железа. Так, в исследованиях на 27 добровольцах с применением полного промывания кишечника для измерения степени усвоения железа при использовании кальциевых добавок (450 мг) было показано снижение абсорбции только гемового железа на 20%. В этой работе добавление кальция не влияло на абсорбцию негемового железа (Z. K. Roughead, 2005). В другом исследовании, проведенном на 44 мужчинах и 81 женщине, наблюдали снижение всасывания гемового железа из рациона при добавлении кальция в дозах от 40 до 300 мг. Максимальное снижение наблюдалось при дозе 300 мг и составило 74%. Дальнейшее увеличение содержания кальция до 600 мг не приводило к возрастанию ингибирования иона железа (L. Hallberg et al., 1991). Противоречивые результаты, получаемые в разных работах, связаны, по-видимому, со сложностью воспроизведения точности методических подходов, проводимых на людях.

Во всех приведенных выше исследованиях было показано в той или иной мере уменьшение абсорбции железа в желудочно-кишечном тракте на 20–60% при совместном употреблении с кальцийсодержащими продуктами в ходе однократного приема пищи или таблетированных препаратов. Характерно, что использованные дозы кальция не превышали дневную норму взрослого человека (во всех описанных случаях суммарное поступление кальция за сутки было меньше 1000 мг). Однако непосредственный механизм антагонистического влияния кальция на всасывание железа остается неясным.

Серия исследований, проведенных на добровольцах при длительном совместном приеме пищи, содержащей определенное количество железа и кальция, не позволила получить однозначного ответа о влиянии иона кальция на биодоступность железа, а главное — на уровень гемоглобина у этих испытуемых. Часто эффект выявлялся (ингибирование составляет 19%), но был статистически недостоверен (Reddy et al., 1997). По-видимому, длительные исследования на людях осложняются контролем над соблюдением диеты и составлением диеты для контрольной группы (S. R. Lynch, 2000).

Анализ литературы позволяет заключить, что экспериментальные исследования на животных и работы, проведенные на испытуемых, подтвердили, что ионы кальция способны уменьшать уровень всасывания железа. Степень выявления эффекта зависела от используемых методических подходов, которые в разных работах отличались друг от друга, и это затрудняет интерпретацию результатов. Однако возможность таких взаимодействий может быть наиболее актуальна и должна безусловно учитываться для людей, страдающих железодефицитными состояниями (анемии) или входящих в группу риска по этому состоянию (дети, беременные и т. д.). Для лечения и профилактики таких состояний необходимо увеличить потребление железа, как за счет соблюдения соответствующей диеты, так и с помощью минеральных добавок. Но следует помнить, что эффективность этих мер может значительно снижаться на фоне потребления диетического кальция или кальцийсодержащих витаминных комплексов. Ограничивать потребление кальция не желательно, поскольку во многих случаях (беременность, возраст 12–18 лет) существует повышенная потребность в обоих элементах. Выходом из ситуации может служить раздельное применение кальция и железа. Экспериментальные данные показали, что интервал между приемом кальция и железа даже в 4 ч исключает эффект ингибирования (A. Gleeprup et al., 1993). Помимо этого, во время приема препарата железа стоит воздержаться от употребления любых продуктов, содержащих кальций, т. е. требуется исключить весь спектр молочной продукции, а также зеленые части растений.

В данном случае удобно применять витаминно-минеральные комплексы, которые заранее предусматривают раздельное употребление железа и кальция. И это не единственное сочетание жизненно важных микронутриентов, проявляющих антагонистические свойства. Таким образом, грамотное разделение компонентов витаминно-минеральных комплексов по времени приема является необходимым условием эффективности их применения.

Литература
  1. Arredondo M., Martinez R., Nunez M. T. et al. Inhibition of iron and copper uptake by iron, copper and zinc. Biol. Res. 2006; 39: 95–102.
  2. Barton J. C., Conrad M. E., Parmley R. T. Calcium inhibition of inorganic iron absorption in rats. Gastroenterology. 1983; 84: 90–101.
  3. Conrad M. E., Umbreit J. N. A concise review: iron absorption- the mucin — mobilferrin — integrin parthway. A competitive parthway for metal absorption. Am J Hematology. 1993; 42: 67–73.
  4. Cook J. D. Adaption in iron metabolism. Am J Clin Nutrition. 1990; 42: 67–73.
  5. Cook J. D., Dassenko S. A., Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutrition. 1991a; 53: 106–111.
  6. Donovan A., Brownile A., Zhou Y. et al. Positional cloning of zebrafish ferraportin identifies a conserved vertebrate iron exporter. Nature. 2000; 403: 776–781.
  7. Gleerup A., Rossander-Hulten L., Hallberg L. Duration of the inhibitory effect of calcium on non-haem iron absorption in man. Eur I Clin Nutr. 1993; 47: 875–879.
  8. Guinote, Fleming R., Silva R. et al. Using skin to assass iron accumulation in human metabolic disorders. Ion Beam Analysis. 2006; 249: 697–701.
  9. Hallenberg L., Brune M., Erlandsson M. et al. Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. Am J Clin Nutrition. 1991; 53: 112–119.
  10. Hoenderop J. Gj., Nilius B., Bindels R. J. M. Calcium absorption across epithelia. Physiol. Rev. 2005; 85: 373–422.
  11. Linder M. C. Nutrition and metabolism of the trace element. Nutritional Biochemestry and Metabolism. 1991: 151–198.
  12. Linder M. C., Moriya M., Whon A. et al. Vesicular transport of Fe and interaction with other metal ions in polarized Caco2 Cell monolayers. Biol. Res. 2006; 39: 143–156.
  13. Lynch S. R. The effect of calcium on iron absorption. Nutr. Res. Rev. 2000; 13: 141–158.
  14. Ma Y., Specian R. D., Yen K. Y. et al. The transcytosis of divalent metal transporter 1 and apo-transferrin during iron uptake in intesyinal epithelium. Am J Physiol. 2002; 283: 965–97