Гемоглобин человека и шимпанзе

Гемоглобин человека и шимпанзе

 ГЕОХРОНОЛОГИЯ

 ЭВОЛЮЦИЯ

 ЭВОЛЮЦИОННОЕ УЧЕНИЕ

 ПАЛЕОКЛИМАТОЛОГИЯ

 ПАЛЕОЭКОЛОГИЯ

Изучение молекул позволяет распутать эволюционный клубок

Стараясь установить, насколько тесно родство между отдельными видами, ученые разработали для достижения этой цели три основных метода, опирающихся на измерение степени различий в ДНК исследуемых видов, а также в молекулах их белков. Метод гибридизации ДНК основан на исследовании генетического материала – дезоксирибонуклеиновой кислоты – и использует то счастливое обстоятельство, что ее молекулы состоят из двух цепочек, слагающихся из простых соединений. Цепочки закручены одна вокруг другой двойной спиралью и удерживаются в этом положении прочными связями. Методы лабораторных исследований позволяют разорвать связи между цепочками – разделить их, развернув двойную спираль. Если проделать это с ДНК человека и гориллы, а потом соединить одну цепочку ДНК человека с одной цепочкой ДНК гориллы, все химические связи между ними восстановятся, кроме тех мест, где звенья химически различаются. (На рисунке – два пробела там, где связи направлены в противоположные стороны.) Поскольку эти различия отражают мутации (генетические изменения, которые приводят к эволюции), близость родства между человеком и гориллой определяется по числу невосстанавливающихся химических связей. Именно эти различия в ДНК и делают человека человеком, а гориллу гориллой.

Второй способ определения эволюционного “расстояния” между двумя видами строится на сравнении белковых молекул, например молекул белков крови. Все белковые молекулы слагаются из одних и тех же кирпичиков – из 20 разных аминокислот, соединяющихся в длинные цепи в разном порядке. Белки человека, мыши и гориллы состоят из одних и тех же аминокислот, но различно расположенных, что и определяет, кто есть кто.

Сложные лабораторные методы позволяют теперь исследовать белковую молекулу от одного ее конца до другого и определять для каждого белка точное расположение 20 аминокислот, повторяющихся вновь и вновь в различных сочетаниях. Например, гемоглобин – белок красных кровяных телец – состоит из цепи, включающей 287 единиц аминокислот, последовательное расположение которых уже установлено для многих животных. Чем больше похожи эти последовательности, тем ближе родство данных животных, чем менее они похожи, тем родство отдаленнее.

У человека и шимпанзе последовательность расположения аминокислот гемоглобина совпадает полностью. Человек и горилла состоят в близком родстве – их гемоглобин имеет только два различия. А вот между гемоглобином человека и лошади имеются 43 различия. На упрощенном рисунке символами обозначено только шесть аминокислот, а не двадцать. Стрелки указывают на точки, где имеются различия.

Анализ аминокислотной последовательности белков при всей его точности трудоемок, поскольку 20 аминокислот дают в белках сотни различных сочетаний. Иммунологический метод позволяет избежать кропотливого определения всей последовательности аминокислот. Он опирается на способность организма вырабатывать антитела для защиты от чужеродных белков, попадающих в кровь. Антитела, реагирующие с белками одного животного, будут реагировать и с белками близкородственных ему видов.

Если взять у человека альбумин, белок кровяной сыворотки, и впрыснуть его кроликам, в их крови начнут вырабатываться антитела, чтобы защитить организм от чужеродного вещества. На рисунке антитела обозначены оранжевым цветом. Сыворотку, содержащую антитела против альбумина человека, можно теперь использовать для измерения степени родства между человеком и различными животными. Смешанная с человеческим сывороточным альбумином, эта сыворотка (справа вверху) даст бурную реакцию, так как кролик выработал ее специально для борьбы с человеческим альбумином (пробирка доверху закрашена голубым цветом).

Альбумин кровяной сыворотки шимпанзе, лишь чуть-чуть отличающийся от человеческого, вызывает почти столь же бурную реакцию. Но сывороточный альбумин лошади очень отличается от человеческого и оказывает на такую кроличью сыворотку очень слабое воздействие.

Эта таблица выявляет несколько поразительных фактов. Она не только подтверждает результаты, полученные другими методами, показывая, что человек очень близок к горилле (только 8 различий), уже не так близок к гиббону (14 различий) и довольно далек от низших обезьян (32 различия), но и показывает, что низшие обезьяны равно удалены от остальных трех сравниваемых приматов. Эта равноудаленность позволяет сделать вывод, что низшие обезьяны разошлись с предком всех этих человекообразных обезьян одновременно и с тех пор темп эволюции альбумина кровяной сыворотки у них всех оставался удивительно постоянным. Другими словами, все они эволюционировали почти с одинаковой скоростью.

Для проверки этого важнейшего момента – скорости эволюции – Сарич и Уилсон вышли за пределы генеалогического древа приматов и сравнили приматов с хищниками. Результаты приведены в правой таблице. Число изменений альбумина кровяной сыворотки тут много выше, что указывает на гораздо большую древность разделения приматов и хищников, чем разделения самих приматов. Удивительно же в этих новых цифрах следующее: если не считать некоторого отклонения у долгопята, они практически совпадают, вновь доказывая, что все эти животные эволюционировали с одной скоростью.

Теперь нужно определить, какова же эта скорость. Ведь если мы сумеем количественно измерить степень эволюционных изменений и скорость, с которой они происходят, мы вернемся к знакомым задачам на время, расстояние и скорость из наших школьных учебников по арифметике. Зная две величины, мы можем вычислить третью. Наконец-то у нас появилась возможность точно измерять время эволюции тех или иных видов и с достаточной уверенностью отмечать места развилок на генеалогическом древе.

Таблица показывает различия в сывороточном альбумине приматов

Таблица показывает приматов и хищников

Чем меньше различий – как, например, между человеком и человекообразными обезьянами, – тем ближе эволюционное родство.

Для решения этой задачи Сарич и Уилсон собрали огромное количество молекулярно-биологических данных. Постоянно сопоставляя и перепроверяя эти данные, они получили предположительные скорости эволюции не только для ДНК, но и для нескольких белков крови. Затем они выбрали исходную дату для построения своего генеалогического древа – происшедшее 36 миллионов лет назад разделение обезьян Нового и Старого Света (хотя далеко не все палеонтологи согласны с этой датой). От этой вехи они с помощью своих молекулярных часов начали вести отсчет времени, отмечая развилки – сначала низших и человекообразных обезьян, затем, наконец, гоминидов и шимпанзе.

Метод измерения Сарича – Уилсона показал разделение гоминидов и шимпанзе менее чем четыре миллиона лет назад, и антропологический мир пришел в ярость. Все сторонники палеонтологического подхода встретили эту дату в штыки. “А как же Омо? – кричат они. – Вспомните Канапои, Лотегем. Ведь там обнаружены гоминиды, имеющие возраст в три, четыре, пять миллионов лет, и внешне они не похожи на человекообразных обезьян. Вы просите, чтобы мы ради ваших драгоценных молекул полностью отбросили свидетельства окаменелостей. Вы просите нас принять постоянные скорости эволюции, а мы их не принимаем. И вы просите нас начать отсчет с момента во времени, относительно которого мы все еще спорим между собой”.

Источник

Кристина Петрова

Мастер

(1392)

10 лет назад

Вид — совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенную область — ареал.
Вид — совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенную область — ареал.
Морфологический критерий подразумевает внешнее сходство особей, относящихся к одному виду.
Но есть виды, морфологически почти неотличимые, так называемые виды-двойники, которые не скрещиваются, генетически изолированы. Например, два вида черных крыс: у одного вида в кариотипе 38 хромосом, у другого — 42
Но иногда особи одного вида очень сильно отличаются (породы собак, породы голубей) .
Следовательно, для определения видовой принадлежности одного морфологического критерия недостаточно.
Основным является генетический критерий: для каждого вида характерен свой хромосомный набор, кариотип. Виды обычно отличаются по числу и строению хромосом.
Именно этот критерий обеспечивает генетическую изоляцию, нескрещиваемость между особями разных видов. Даже если появляются межвидовые гибриды, они чаще всего бесплодны, нарушается процесс образования половых клеток.
Но иногда и этот критерий подводит, так как плодовитое потомство может появляться при скрещивании особей, относящихся к разным видам.
Особи одного вида сходны по всем физиологическим процессам — питанию, дыханию, выделению, размножению, что лежит в основе физиологического критерия.
Особенно важны отличия в физиологии размножения: в сроках размножения, физиологии размножения.
Например беременность у приматов продолжается 9 месяцев, группы крови А и В обнаружены у всех человекообразных обезьян, группа 0 – лишь у шимпанзе.
Биохимический критерий основан на сравнении органических макромолекул у различных видов, в первую очередь сравнении ДНК и белков. По сходству в строении ДНК и белков можно с достаточной вероятностью показать, насколько близкими родственниками являются те или иные виды.
Например, гемоглобин шимпанзе по последовательности аминокислот не отличается от гемоглобина человека, а у гориллы – два отличия в последовательности аминокислот.
Экологический критерий — это экологические условия, в которых обитает данный вид. Лиса приспособлена к одни экологическим условиям, песец – к другим, фенек – к третьим.
Географический критерий — это территория, на которой обитает данный вид – ареал.
У некоторых видов-эндемиков ареал небольшой, есть виды — космополиты, распространенные повсеместно. Но области распространения различных видов часто перекрываются, так что этот критерий не может быть решающим

Источник: авторитетный

Абдулла Зербалиев

Ученик

(177)

3 года назад

какой критерий вида является определяющим для появления плодовитого потомства при скрещивании?
1)биохимический
2)генетический
3)экологический
4)морфологический
ответ: ( )
правильной ответ какой

Источник

ЛОНДОН, 26 января. Насколько в действительности расходятся геномы человека и шимпанзе? Как пишет “Мембрана”,  загадку «одновременного» минимального и максимального отличия ученые решают не первый год.

В 1975 году Мэри-Клэр Кинг и Аллан Уилсон опубликовали в журнале Science статью о генетическом подобии шимпанзе и человека. Но этот материал чаще цитировался для подтверждения «почти полной идентичности» шимпанзе и человека, хотя ученые пытались объяснить, что никто по-настоящему не понимает, как происходила макроэволюция.

Кинг и Уилсон сравнили аминокислотные последовательности нескольких белков шимпанзе и человека (таких как гемоглобин и миоглобин), и обнаружили, что последовательности либо идентичны, либо почти идентичны. «…Последовательности полипептидов шимпанзе и человека, изученные на данный момент, в среднем идентичны более чем на 99%», – сделали вывод эксперты.

По вине читателей, поленившихся дочитать статью до конца, родился “Миф об 1%” генетического различия Homo sapiens и Pan troglodytes, как его позднее назвал Йон Коген в своей статье в Science в 2007-м.

Проводились и прочие исследования, которые подтверждали сходство на 98,5 %. Но это была относительная цифра, поскольку сравнение проводилось только в кодирующих частях ДНК и только среди похожих генов с «заменой единичных оснований». Не брались в рассчет «вставки-удаления» и «повторы» в ДНК, поскольку тогда не представлялось возможным их сравнить. Последующие сравнительные анализы с применением новых технологий позволили уточнить данные.

В 2002 году Рой Бриттен, сравнив «вставки-удаления», обнаружил, что они увеличивают генетическое различие еще на 4%. С тех пор мнимая «идентичность» составляла менее 95%.

Через четыре года другой ученый Мэтью Ханн с коллегами установил, что, «вставки-удаления» добавляют еще больше разницы, чем определил Бриттен — а именно 6,4% (то есть 1418 генов). Итого предполагаемое совпадение уменьшилось до 92-93%.

Ну и наконец, в 2008-м, была предпринята попытка провести сравнительный анализ огромных участков «повторов»(функция которых пока не до конца ясна), в результате которой выяснилось, что абсолютное сходство между ДНК человека и шимпанзе может составлять менее 90%.

Может показаться, что разница между 98% и 95% совсем незначительна, но если учесть, что ДНК человека состоит из 3 млрд пар оснований, тогда разница в 3% составит 90 млн пар оснований.

Добавим, еще несколько лет назад американские ученые установили, что человекообразные обезьяны используют ту же жестикуляцию, что и люди. По их мнению, это подкрепляет предположение о том, что жестикуляция была важной составной частью языка, на котором общались предки человека.

Ученые университета Эмори в Атланте наблюдали за двумя группами из 34 обыкновенных и 13 карликовых шимпанзе. В этих группах обезьян ученые выделили один жест, который покажется знакомым многим людям — вытянутая вперед рука ладонью вверх. Чаще всего шимпанзе таким способом просили друг у друга еду. Но ученые заметили, что этот же жест в ином контексте мог приобрести другой смысл: самец шимпанзе мог точно так же предложить самке секс или предложить другому самцу помириться после драки.

Эта способность менять смысл роднит жесты обезьян с человеческим языком, в котором каждое выражение может приобретать самые разнообразные смыслы в зависимости от контекста.

Обезьяны, как заметили ученые, жестикулируют правой рукой, которую контролирует левое полушарие мозга. В том же полушарии у людей находится центр языка.

Источник

Светлана Александровна Боринская

д. б. н., заведующая лабораторией анализа генома Института общей генетики им. Н.И.Вавилова РАН

То, что обезьяна – близкий родственник человека, известно уже давно, шимпанзе среди всех обезьян – наш самый близкий родственник. При исследовании ДНК происхождение человека от обезьяноподобных предков вполне подтверждается. Генетические различия на уровне ДНК между людьми составляют в среднем 1 нуклеотид из 1000 (то есть 0.1%), между человеком и шимпанзе – 1 нуклеотид из 100 (т.е. 1%).

Гемоглобин человека и шимпанзеГемоглобин человека и шимпанзе

По размеру генома человек и высшие приматы не отличаются друг от друга, но отличаются по количеству хромосом – у человека на одну пару меньше. Как было рассказано на прошлых лекциях, у человека 23 пары хромосом, т.е. всего 46. У шимпанзе 48 хромосом, на одну пару больше. В процессе эволюции у предков человека две разных хромосомы приматов объединились в одну. Подобные изменения числа хромосом встречаются и в эволюции других видов. Они могут быть важны для генетической изоляции группы в процессе видообразования, так как в большинстве случаев особи с разным числом хромосом не дают потомства.

Время расхождения (дивергенции) видов, или другими словами, время существования последнего общего предка для двух видов, можно определить несколькими способами. Первый такой: проводят датировку костных останков и определяют, кому эти останки могли принадлежать, когда мог жить общий предок тех или иных видов. Но костных останков предполагаемых предков человека не так много, чтобы можно было с уверенностью восстановить и датировать полную последовательность форм в процессе антропогенеза. Сейчас используют другой способ датировки времени расхождения человека и остальных приматов. Для этого подсчитывают количество мутаций, накопившихся в одних и тех же генах в каждой из ветвей за время их раздельной эволюции. Скорость накопления этих мутаций более менее известна. Скорость накопления мутаций устанавливают по числу различий в ДНК тех видов, для которых известны палеонтологические датировки расхождения видов по костным останкам. Время расхождения человека с шимпанзе по разным оценкам варьирует от 5,4 до 7 млн. лет назад.

Вы уже знаете, что геном человека полностью прочтен (секвенирован). В прошлом году появилось сообщение, что прочтен также геном шимпанзе. Сравнивая геномы человека и шимпанзе, ученые пытаются выявить те гены, которые “делают нас людьми”. Это было бы легко сделать, если бы после разделения ветвей эволюционировали только гены человека, но это не так, шимпанзе тоже развивались, в их генах тоже накапливались мутации. Поэтому, чтобы понять, в какой ветви произошла мутация – у человека или у шимпанзе – приходится сравнивать их еще и с ДНК других видов, гориллы, орангутана, мыши. То есть то, что есть только у шимпанзе и нет например у орангутана, это чисто «шимпанзиные» замены нуклеотидов. Таким образом, сравнивая нуклеотидные последовательности разных видов приматов, мы можем выделить те мутации, которые произошли только в линии наших предков. Сейчас известно около дюжины генов, которые “делают нас людьми”.

Обнаружены различия между человеком и другими животными по генам обонятельных рецепторов. У человека многие гены обонятельных рецепторов инактивированы. Сам фрагмент ДНК присутствует, но в нем появляются мутации, которые инактивируют этот ген: либо он не транскрибируется, либо он транскрибируется, но с него образуется нефункциональный продукт. Как только прекращается отбор на поддержание функциональности гена, в нем начинают накапливаться мутации, сбивающие рамку считывания, вставляющие стоп-кодоны и т.д. То есть мутации появляются во всех генах, и скорость мутирования примерно постоянная. Удается поддерживать ген функционирующим только за счет того, что мутации, нарушающие важные функции, отбрасываются отбором. Такие инактивированные мутациями гены, которые можно распознать по последовательности нуклеотидов, но накопившие мутации, делающие его неактивным, называются псевдогенами. Всего в геноме млекопитающих около 1000 последовательностей, соответствующих генам обонятельных рецепторов. Из них у мыши 20% псевдогенов, у шимпанзе и макаки инактивирована треть (28-26%), а у человека – более половины (54%) являются псевдогенами.

Псевдогены найдены у человека также среди генов, которые кодируют семейство белков кератинов, входящих в состав волос. Так как волосяной покров у нас меньше, чем у шимпанзе, то понятно, что часть таких генов могла быть инактивирована.

Гемоглобин человека и шимпанзеГемоглобин человека и шимпанзе

Когда говорят об отличии человека от обезьяны, то в первую очередь выделяют развитие умственных способностей и способность к речи. Найден ген, связанный со способностью говорить. Этот ген выявили, изучая семью с наследственными нарушением речи: неспособностью научиться строить фразы в соответствии с правилами грамматики, сочетавшейся с легкой степенью задержки умственного развития. На слайде представлена родословная этой семьи: кружки – это женщины, квадратики – мужчины, закрашенные фигуры – больные члены семьи. Мутация, ассоциированная с заболеванием, находится в гене FOXP2 (forkhead box P2). У человека достаточно трудно исследовать функции гена, легче это делать у мышей. Используют так называемую технику нокаута. Ген прицельно инактивируют, если знать конкретную последовательность нуклеотидов, то это возможно, после этого у мыши этот ген не работает. У мышей, у которых выключили ген FOXP2, нарушилось формирование одной из зон мозга в эмбриональный период. Видимо, у человека эта зона связана с освоением речи. Кодирует этот ген фактор транскрипции. Напомним, что на эмбриональной стадии развития факторы транскрипции включают группу генов на тех или иных этапах, которые контролируют превращение клеток в то, во что они должны превратиться.

Гемоглобин человека и шимпанзеГемоглобин человека и шимпанзе

Чтобы посмотреть, как этот ген эволюционировал, его просеквенировали у разных видов: мыши, макаки, орангутана, гориллы и шимпанзе, после этого сравнили эти последовательности нуклеотидов с человеческой.

Оказалось, что этот ген очень консервативен. Среди всех приматов только у орангутана имелась одна аминокислотная замена, и одна замена у мыши. На слайде у каждой линии видны две цифры, первая показывает число аминокислотных замен, вторая – число так называемых молчащих (синонимических) нуклеотидных замен, чаще всего это замены в третьей позиции кодона, не влияющей на кодируемую аминокислоту. Видно, что молчащие замены накапливаются во всех линиях, то есть мутации в данном локусе не запрещены, если они не ведут к аминокислотным заменам. Это не значит, что не появлялись мутации в белок-кодирующей части, они скорее всего появлялись, но были отсеяны отбором, поэтому мы не можем их зафиксировать. В нижней части рисунка схематично изображена аминокислотная последовательность белка, отмечены места, где произошли две аминокислотные замены человека, которые, видимо, повлияли на функциональные особенности белка FOXP2.

Если белок эволюционирует с постоянной скоростью (число нуклеотидных замен в единицу времени постоянно), то число замен в ветвях будет пропорционально времени, в течение которого замены накапливались. Время разделения линии грызунов (мыши) и приматов принимается равным 90 млн. лет, время разделения человека и шимпанзе – 5.5 млн лет. Тогда количество замен m, накопившихся суммарно в линии мыши и в линии приматов между точкой разделения с мышью и точкой разделения человека и шимпанзе (см. рисунок), по сравнению с числом замен h в линии человека, должно быть в 31.7 раз больше. Если же в линии человека накопилось больше замен, чем ожидается при постоянной скорости эволюции гена, то говорят об ускорении эволюции. Во сколько раз ускорена эволюция, вычисляют по простой формуле:

A. I.= ( h/5.5) / [ m/(2 x 90 – 5.5)]= 31.7 h / m

Где A.I. (Acceleration Index) – индекс ускорения.

Теперь надо оценить, находится ли отклонение числа замен в линии человека от в пределах случайного, или отклонение достоверно выше ожидаемого. Вероятность того, что в линии человека за 5.5 млн. лет появится 2 аминокислотные замены при том, что вероятность появления замен оценивается по линии мыши как 1/(90+84.6)=1/174.6. При этом используют биноминальное распределение B(h + m, Th/(Th+Tm)), где h – число замен в линии человека, m-число замен в линии мыши: Th=5.5, Tm=174.5.

Гемоглобин человека и шимпанзе

Попробуйте самостоятельно рассчитать вероятность в приведенном примере.

Место первой публикации: https://www.bio.fizteh.ru/student/files/biology/biolections/lection21.html

Источник