Гемоглобин транспорт газов а хромосома

Гемоглобин транспорт газов а хромосома thumbnail

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Читайте также:  Высокий гемоглобин у больных раком

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; KE van Holde & KG Ahern (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & C Chothia (1976), “Structural patterns in globular proteins”, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

Анонимный вопрос  · 7 января 2019

20,2 K

Гемоглобин связывает газы, находящиеся в крови и тем самым переносит их.

Это может быть кислород, который попадает в кровь с вдыхаемым воздухом, также как и ядовитый для человека – угарный газ.

От клеток к органам дыхания гемоглобин переносит углекислый газ, он является конечным продуктом обмена, который нужно вывести из организма посредством дыхательной системы.

Гемоглобин это пигмент эритроцитов, благодаря ему кровь имеет красный цвет.

Гемоглобин – сложный железосодержащий белок, содержится в красных кровяных тельцах (эритроциты), он обеспечивает весь организм кислородом. Недостаток гемоглобина вызывает головокружение, ломкость ногтей, анемию и т.д.

Гемоглобин играет очень важную роль в нашем организме, без него наш организм вряд ли сможет снабжать кислородом наиболее отдаленные части тела и органы, такие как руки и ноги, печень и прочие органы. Ну и кроме этого гемоглобин помогает выводить из нашего организма углерод, что тоже немаловажная функция. Подробнее обо всем этом можете вот тут… Читать далее

Какие пить препараты железа при низком гемоглобине?

Люблю моду, путешествия, детективы, английский язык.

Распространенными и популярными являются следующие препараты повышающие гемоглобин в крови: Гемобин, Тотема, Ферретаб, Феррум лек, Ферро-фольгамма, Сорбифер Дурулес, Гемофер капли, Мальтофер.

Прочитать ещё 1 ответ

Если в организме недостаток железа, то какие это влечет последствия?

Клиника Марины Рябус – смарт-косметология для людей со смарт-мышлением. Топовые процедуры…  · marinaryabus.ru

Катастрофические.

Просто перечислю функции железа –

участие в переносе кислорода, тканевом дыхании, перенос электронов в цепи цитохромов в митохондриях и участие в поцессах получения энергии, участие в деятельности ферментов печени цитохромов, репликвции ДНК, защите от вирусов и бактерий, синтезе гормонов щмтовидной железы, синтезе коллагена, кофактор ферментов 3 эиапов цикла Кребса или ЦТК.

Железо – это наше все!

Причем важно как гемовое (из мяса), так и негемовое железо (получаемое из растительных субстратов).

Последствия – слабость, вялость апатия, головоркужения, пониженная умственная деятельность, плохая работоспособность, частые ОРЗ, ОРВИ, хейлиты (заеды), стоматиты – это первая стадия.

Далее – выпадение волос, синдром познобления – зябкость, плохая переносимость холода, плохая заживляемость ран, склонность к кровоточивости, нарушения менструального цикла.

В глубоко зашедших стадиях возможна ранняя менопауза, отсутствие репродуктивной функции, множественные заболевания…

Прочитать ещё 3 ответа

Гемоглобин низкий надоел! Железо в капсулах каких производителей посоветуете? И народные средства для быстрого повышения?

Перед тем как повысить уровень гемоглобина, надо знать его нормальные показатели, а это: 130г/л у мужчин, 120г/л у женщин и 110г/л у детей. Отклонения в несколько единиц — нормальное явление, но знать причины перепадов уровня гемоглобина желательно всем. Падение уровня в крови может быть вызвано:

  • заболеваниями, которые приводили к потере крови (язвы, геморрой, эрозии);
  • внезапным повышением гормонального фона (подростковый период, беременность, климакс, заболевания щитовидной железы);
  • тяжелым физическим трудом и недостаточным или неправильным питанием;
  • нарушением менструального цикла и сопутствующими «женскими» заболеваниями;
  • плохим усвоением железа из продуктов (некоторые заболевания пищеварительной системы);
  • послеоперационным периодом.

В домашних условиях гемоглобин повышается продуктами питания, которые содержат много железа. Их разнообразие велико, поэтому развернуто на эту тему рекомендую ЗДЕСЬ почитать.

Прочитать ещё 1 ответ

Что полезно кушать для того, чтобы поднять гемоглобин?

Гемоглобин – сложный белок, его ключевой составляющей является ион железа (Fe2+).

Читайте также:  Гемоглобин 108 ребенку 3 месяца

Суточная потребность в железе для мужчин – 10 мг, для женщин – 18 мг (для пожилых женщин – 10 мг).

Удивительно что Дмитрий Разин не написал про МЯСО (говядина, менее – свинина, телятина) – главный источник железа. Чуть меньше его в субпродуктах (печени, почках, языке), еще меньше – в рыбе, а мясо птицы бедно железом.

Здесь можно посмотреть содержание железа в различных продуктах: vk.me

Для оптимального всасывания железа необходима нормальная секреция желудочного сока. Животный белок, аскорбиновая кислота и другие органические кислоты улучшают всасывание железа, поэтому железо овощей и плодов богатых витамином С и органическими кислотами хорошо усваивается.

Всасыванию железа способствуют некоторые простые углеводы – лактоза, фруктоза, сорбит, а также аминокислоты – гистидин и лизин. А вот щавелевая кислота и дубильные вещества ухудшают всасывание железа, поэтому шпинат, щавель, черника, которые богаты железом, не могут служить его хорошим источником.

Фосфаты и фитины, содержащиеся в зерновых, бобовых и некоторых овощах, препятствуют всасываю железа, а если к этим продуктам добавлять мясо или рыбу, то усвоение железа улучшается. Также усвоению железа препятствуют крепкий чай, кофе, большое количество в рационе пищевых волокон, особенно отрубей.

Помните, что приготовление продуктов на сильном огне в течение длительного времени уменьшает количество усваиваемого железа в пище, поэтому лучше выбирать куски мяса или рыбы, которые можно приготовить на пару или слегка поджарить.

Прочитать ещё 1 ответ

Привет, ИНВИТРО! Гемоглобин 70, выписали Сорбифер, но от него меня вырвало, чем заменить?

Уважаемый(ая) Автор вопроса! Действительно, при пероральном приеме препаратов, содержащих железо, возможно появление диспепсических симптомов (тошнота, иногда рвота, металлический привкус во рту, нарушение стула). Для уменьшения нежелательных побочных явлений возможен прием препарата во время еды, хотя это нежелательно, так как уменьшается процент всасывания железа, что удлиняет время лечения анемии. Сорбифер относится к препаратам солей железа. Можно его заменить препаратами железосодержащих комплексов (Феррум ЛЕК, Мальтофер ФОЛ). Если все-таки будет выявляться плохая переносимость всех пероральных железосодержащих препаратов, то в этом случае возможно назначение парентеральных их форм (внутримышечно или внутривенно)

Прочитать ещё 1 ответ

Источник

Внутренняя среда организма: кровь, лимфа, тканевая жидкость.

состав внутренней среды организма

СоставГде течетФункция

Кровь:

60 % — плазма крови 

40 % — форменные элементы

в кровеносных сосудах
  • транспортная; 

  • защитная;

  • регуляторная;

  • гомеостатическая; 

  • терморегуляция;

  • гуморальная регуляция

 Лимфа:

97 % — плазма крови

3 % — лейкоциты

в лимфатических сосудах
  • защитная (иммунитет);

  • возвращение белков, воды, солей, продуктов распада из тканей в кровь;

  • водный и жировой обмен; 

  • гуморальная регуляция;

  • гомеостатическая

Тканевая жидкость:

плазма крови (меньше белка)

среди тканей — контактирует с клетками
  • образование лимфы;

  • транспортная (питательные вещества, газы и продукты обмена между тканями и кровеносными сосудами);

  • гомеостатическая

гомеостаз

Гомеостаз — совокупность механизмов, обеспечивающих постоянство состава внутренней среды организма. 

Для внутренней среды организма характерно относительное постоянство состава и физико-химических свойств. При изменении какого-либо параметра внутренней среды в организме включаются мощные системы саморегуляции. Они обеспечивают изменение функций многих органов и систем так, чтобы их работа восстановила исходный баланс.  

Транспорт веществ во внутренней среде организма

Транспорт питательных веществ

Гемоглобин транспорт газов а хромосома

Транспорт продуктов метаболизма

Гемоглобин транспорт газов а хромосома

кровь

Функции крови:

  1. Транспортная: перенос кислорода от легких к тканям и углекислого газа от тканей к легким; доставка питательных веществ, витаминов, минеральных веществ и воды от органов пищеварения к тканям; удаление из тканей конечных продуктов метаболизма, лишней воды и минеральных солей.

  2. Защитная: участие в клеточных и гуморальных механизмах иммунитета, в свертывании крови и остановке кровотечения.

  3. Регуляторная: регуляция температуры, водно-солевого обмена между кровью и тканями, перенос гормонов.

  4. Гомеостатическая: поддержание стабильности показателей гомеостаза (рН, осмотического давления (давления, оказываемое растворенным веществом посредством движения его молекул) и др.).

Рис. 1. Состав крови

Элемент кровиСтроение/составФункция
 плазмажелтоватая полупрозрачная жидкость из воды, минеральных и органических веществ
  • транспорт: питательные вещества из пищеварительной системы в ткани, продукты обмена и избыток воды от тканей к органам выделительной системы;

  • свертывание крови (белок фибриноген)

эритроциты 

 красные клетки крови:

  • двояковогнутая форма;

  • содержат белок гемоглобин;

  • нет ядра

  • транспорт кислорода от легких к тканям;

  • транспорт углекислого газа от тканей к легким;

  • ферментативная — переносят  ферменты;

  • защитная — связывают токсические вещества;

  • питательная — транспорт аминокислоты;

  • принимают участие в свёртывании крови;

  • поддерживают постоянство рН крови 

 лейкоциты

 белые клетки крови:

  • есть ядро;

  • различная форма и размер;

  • некоторые способны к амебоидному движению;

  • способны проникать через стенку капилляра;

  • способны к фагоцитозу 

  • клеточный и гуморальный иммунитет;

  • разрушение погибших клеток;

  • ферментативная функция (содержат ферменты для расщепления белков, жиров, углеводов);

  • принимают участие в свёртывании крови 

 тромбоциты

кровяные пластинки:

  • способность прилипать к стенкам поврежденных сосудов (адгезия) и склеивать их;

  • способны к объединению (агрегации)

  • свертывание крови (коагуляция);

  • регенерация тканей (выделяют факторы роста);

  • иммунная защита

Первый компонент внутренней среды организма — кровь — имеет жидкую консистенцию и красный цвет. Красный цвет крови придает гемоглобин, содержащийся в эритроцитах.

Кислотно-щелочная реакция крови (рН) составляет 7,36 — 7,42.

Общее количество крови в организме взрослого человека в норме составляет 6 — 8 % от массы тела и равно примерно 4,5 — 6 л. В кровеносной системе находится 60 — 70 % крови — это так называемая циркулирующая кровь.

Другая часть крови (30 — 40 %) содержится в специальных кровяных депо (печени, селезёнке, сосудах кожи, лёгких) — это депонированная, или резервная, кровь. При резком увеличении потребности организма в кислороде (при подъёме на высоту или усиленной физической работе), или при большой потери крови (при кровотечениях) из кровяных депо происходит выброс крови, и объем циркулирующей крови повышается.  

Кровь состоит из жидкой части — плазмы — и взвешенных в ней форменных элементов (рис. 1).

плазма

На долю плазмы приходится 55 — 60 % объема крови.

Гистологически плазма является межклеточным веществом жидкой соединительной ткани (крови).

Плазма содержит 90 — 92 % воды и 8 — 10 % сухого остатка, главным образом белков (7 — 8 %) и минеральных солей (1 %).

Основными белками плазмы являются альбумины, глобулины и фибриноген. 

Сывороточный альбумин составляет около 55 % всех белков, содержащихся в плазме; синтезируется в печени.

Функция альбумина:

  • транспорт плохо растворимых в воде веществ (билирубина, жирных кислот, липидных гормонов и некоторых лекарств (например, пенициллина). 

Глобулины — глобулярные белки крови, имеющих более высокую молекулярную массу и растворимость в воде, чем альбумины; синтезируются в печени и в иммунной системе. 

Функции глобулинов:

  • иммунная защита; 

  • участвуют в свертываемости крови;

  • транспорт кислорода, железа, гормонов, витаминов.

Фибриноген — белок крови, вырабатываемый в печени.

Функция фибриногена:

  • свертывание крови; фибриноген способен превращаться в нерастворимый белок фибрин и образовывать тромб.

В плазме также растворены питательные вещества: аминокислоты, глюкоза (0,11 %), липиды. В плазму поступают и конечные продукты обмена веществ: мочевина, мочевая кислота и др. В плазме содержатся также различные гормоны, ферменты и другие биологически активные вещества.

Читайте также:  Чем опасен высокий гемоглобин у женщин

Минеральные вещества плазмы составляют около 1 % (катионы $Na^+$, $K^+$, $Са^{2+}$, анионы $Сl^{–}$, $НСО_3^–$, $НРО_4^{2-}$). 

Сыворотка крови — плазма крови, лишённая фибриногена.

Сыворотки получают либо путём естественного свёртывания плазмы (оставшаяся ждкая часть и есть сыворотка), либо путем стимуляции превращения фибриногена в нерастворимый фибрин — осаждение — ионами кальция.

Применение плазмы в медицине

Плазмафарез (плазмаферез)  — процесс отделения плазмы крови с ее последующим очищением от токсинов, антител и др. веществ. Используется при лечении аутоиммунных заболеваний.

Донорский плазмаферез — процесс переливания донорской плазмы при сильных ожогах и компрессионных травмах (у пострадавших при землетрясении или в автокатастрофе).

Плазма с высокой концентрацией тромбоцитов применяется в медицине в качестве стимулятора регенерации тканей организма. 

Сыворотка крови — плазма крови, лишённая фибриногена. 

Сыворотки используют в качестве лекарственных препаратов при многих инфекционных заболеваниях и отравлениях. Сыворотки с химическими метками применяют в диагностике некоторых заболеваний и в научных исследованиях.

форменные элементы крови

На долю форменных элементов в циркулирующей крови приходится 40 — 45 % объема.

В эмбриональный период кровь образуется одновременно с сосудами из мезенхимы. Клетки мезенхимы, дающие начало первичным элементам крови, называются гемоцитобластами. Проходя сложный путь развития, они преобразуются в зрелые кровяные клетки.

Гемопоэз — процесс образования клеток крови.

У плода образование кровяных элементов происходит в печени, а у взрослого человека в специальных кроветворных (гемопоэтических) органах — в красном костном мозге и в селезенке.

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

эритроциты

Эритроциты  — красные клетки крови.

Это безъядерные, двояковогнутые, не способные к делению клетки (рис. 2).

Гемоглобин транспорт газов а хромосома

Рис. 2. Эритроциты в артериоле

Эритроциты имеют форму двояковогнутого диска, что обеспечивает более эффективное захватывание кислорода. Кроме того, благодаря двояковогнутой форме эритроциты способны упруго деформироваться и проходить через самые тонкие капилляры (рис. 3, 4). 

Гемоглобин транспорт газов а хромосома  Гемоглобин транспорт газов а хромосома

Рис. 3. Эритроцит в капилляре     Рис. 4. Поток эритроцитов в капилляре

В процессе дифференцировки ядро утрачивается и весь внутренний объем эритроцита заполняется железосодержащим белком — гемоглобином.

Гемоглобин человека — это сложный белок из класса глобулинов, состоящий из 4 белковых субъединиц и гема — пигментной группы, содержащей ион железа (II) (рис. 5). 

Гемоглобин транспорт газов а хромосома

Рис. 5. Строение гемоглобина

Именно гемоглобин присоединяет к себе кислород в капиллярах легких, превращаясь в оксигемоглобин, и транспортирует его ко всем тканям организма (рис. 6).

Гемоглобин транспорт газов а хромосома  

Рис. 6. Функция гемоглобина

Гемоглобин синтезируется в клетках красного костного мозга и для нормального его образования необходимо достаточное поступление железа с пищей.

В норме содержание гемоглобина в 1 л крови взрослого человека равно 115 — 160 г.

Функции гемоглобина:

  • транспорт кислорода и углекислого газа;

  • принимает участие в поддержании постоянства рН крови (буферные свойства гемоглобина)

Молекула гемоглобина плода человека (фетальный гемоглобин) отличается от молекулы гемоглобина взрослого человека химическим строением и способностью связывать кислород. Молекула фетального гемоглобина более эффективно связывает и транспортирует кислорода к клеткам организма.

Количество эритроцитов в 1 мм$^3$ крови взрослого человека составляет 5x$10^6$ клеток.

У новорожденных количество эритроцитов в 1,5 — 2 раза больше, чем у взрослых; с возрастом их количество уменьшается.

У жителей высокогорных районов количество эритроцитов повышено (эритроцидоз) — адаптация к пониженному содержанию кислорода в атмосфере. Кроме того, содержание эритроцитов в крови увеличивается при физических и эмоциональных нагрузках,  потере жидкости (ожоги, рвота, понос, чрезмерное потоотделение).

Анемия — снижение количества эритроцитов и гемоглобина в крови.

Причиной анемии может быть неправильное питание (например, недостаток железа в пище), кровотечения, нарушение кроветворной функции (гемопоэза), разрушение эритроцитов под действием токсинов, при переливании несовместимой крови, резус-конфликте матери и плода.

Образуются эритроциты в красном костном мозге. 

Эритропоэз — процесс образования эритроцитов.

В сутки у человека образуется примерно 200 — 250 млрд. эритроцитов.

Из эритробластов  — ядерных клеток красного костного мозга — образуются крупные клетки-предшественники эритроцитов — ретикулоциты; они поступают в кровь.

Созревание ретикулоцитов, т. е. превращение их в зрелые эритроциты совершается в течение нескольких часов.

Количество ретикулоцитов в крови служит показателем интенсивности образования эритроцитов в костном мозге. 

Для образования эритроцитов необходимо поступление в организм стимулирующих этот процесс витаминов — $B_12$ и фолиевой кислоты. 

Разрушение старых  эритроцитов происходит в печени и селезёнке.

Один из продуктов распада эритроцитов (точнее гемоглобина) — желчный пигмент билирубин (не содержит железо). Попадая вместе с желчью в кишечник, под влиянием ферментов кишечного сока билирубин превращается в стеркобилин (окрашивает каловые массы) а, попадая с кровью в почки, превращается в уробилин (обусловливает окраску мочи).

Изменение цвета кала и мочи может быть симптомом серьезных расстройств функций печени (образования билирубина), например, при гепатите А.

Время жизни эритроцита — 120 суток.

Гемолиз — это разрушение эритроцитов. Разрушение эритроцитов может происходить по нескольким причинам. Например, при механических повреждениях клеток, под влиянием химических веществ (кислот, щелочей, ядов), при помещении эритроцитов в гипотонический раствор (раствор, с более низкой концентрацией солей, чем в эритроцитах), при замораживании и нагревании, под действием электрического тока.

лейкоциты

Лейкоциты — белые клетки крови.  

Лейкоциты содержат ядро. Они способны изменять форму и активно передвигаться, образуя цитоплазматические выросты (рис. 7).

Лейкоциты различаются по происхождению, функциям и внешнему виду. 

Они выполняют защитную функцию: одни из них способны к фагоцитозу, другие вырабатывают антитела (рис. 8). 

Гемоглобин транспорт газов а хромосома    Гемоглобин транспорт газов а хромосома

Рис. 7. Лейкоцит                                                           Рис. 8. Фагоцитоз бактерий лейкоцитом

Продолжительность жизни лейкоцитов составляет от нескольких часов до нескольких суток. Образуются они в красном костном мозге и в органах иммунной системы (лимфатических узлах и селезенке).

Разрушение лейкоцитов происходит в очагах воспаления и в печени.

У взрослого человека в 1 мм$^3$ крови насчитывается 4 — 9 x $10^3$ лейкоцитов.

тромбоциты

Тромбоциты — кровяные пластинки, являются безъядерными фрагментами клеток (рис. 9).

Они образуются в красном костном мозге путем отщепления безъядерных фрагментов цитоплазмы от гигантских клеток — мегакариоцитов. Из одного мегакариоцита может возникнуть до 1000 тромбоцитов (размеры тромбоцита — 2 — 3 мкм).

 Гемоглобин транспорт газов а хромосома

Рис. 9. Тромбоцит

В 1 мм$^3$  крови содержится 180 — 320 x $10^3$ тромбоцитов.

Продолжительность жизни тромбоцитов в среднем 3 — 5 дней.

Разрушаются тромбоциты в селезёнке, а также в местах нарушения целостности сосудов. 

Основная функция тромбоцитов — свертывание крови (коагуляция) и остановка кровотечений (гемостаз).

Они прилипают к месту повреждения и «латают» место разрыва сосуда.

гемостаз

Обязательным условием для свертывания крови является наличие ионов $Ca^{2+}$ и факторов свёртываемости (ФС). Факторы свёртываемости — это 13 глобулиновых белков, содержащихся в плазме и форменных элементах крови, без которых свёртывание крови  невозможно. Они ообразуются в печени при участии витамина K. 

Запускается система