Гемоглобин выводит углекислый газ

Гемоглобин выводит углекислый газ thumbnail

Дыхательная или респираторная система. Гемоглобин и углекислый газ

Мы, рискуя навлечь справедливые нарекания, позволим себе заявить, что основными системами, обеспечивающими поддержания жизнедеятельности больного при критических состояниях, являются системы органов дыхания и кровообращения. Это утверждение в аспекте тематики настоящей монографии становится обоснованным, если учесть, что при современном уровне интенсивной терапии критических состояний основное внимание реаниматолога направлено на поддержание или протезирование функций именно данных систем.

Поэтому-то большинство методов мониторинга при критических состояниях направлены на регистрацию функциональных параметров газообмена и гемодинамики.

Далее мы намеренно ограничили изложение физиологии и патологии дыхания и кровообращения только освещением вопросов, связанных с газообменной функцией организма, поскольку именно она является основным объектом мониторинга критических состояний. Поэтому основное внимание будет посвящено проблеме газотранспортной функции органов дыхания, крови и насосной функции сердца, обеспечивающих транспорт газов. В связи с этим изложение материала было разделено на две части.

Первая глава посвящена физиологии и патологии газотранспортной функции крови и системы органов дыхания, вторая — насосной функции сердца — основному механизму, обеспечивающему транспорт газов к органам и тканям.

Детальное описание физиологии и патологии дыхания и кровообращения можно найти в известных монографиях отечественных и зарубежных авторов, посвященных тщательному анализу основных вопросов этой проблемы и на нашем сайте МедУнивер.

дыхательная система

В плазме крови при нормальном атмосферном давлении кислород растворен в минимальных количествах, всего в 0,03% (9 мл на 3 литра циркулирующей крови).

В эритроцитах крови находится сложное белковое вещество — гемоглобин, которое, в свое время, великий английский физиолог Дж.Баркрофт назвал «чудесным». Своеобразие этого вещества состоит в том, что, во-первых, оно обладает повышенным сродством к кислороду (1 грамм гемоглобина способен присоединить 1,34-1,37 мл кислорода) и при нормальном содержании гемоглобина 150 г 1 л крови может связать около 200 мл кислорода.

Во-вторых, степень сродства гемоглобина к кислороду меняется в зависимости от парциального давления (напряжения) кислорода. Чем меньше напряжение кислорода, тем больше к нему сродство гемоглобина и тем быстрее он присоединяет кислород.

Эта особенность гемоглобина имеет большой физиологический смысл. При напряжении кислорода в 27 мм Нд гемоглобин насыщается кислородом на 50%, а при напряжении кислорода 60-70 мм Нд гемоглобин почти полностью насыщен кислородом. Отсюда следует, что транспорт кислорода полностью обеспечивается даже в случае 30-40% дефицита поступающего в организм кислорода. Поистине Дж. Баркрофт был прав, назвав гемоглобин чудесным веществом.

Углекислый газ находится в плазме крови в виде раствора и в химической связи в виде легко диссоциирующего гидрокарбоната натрия. Растворимость углекислоты приблизительно в 20 раз больше, чем у кислорода, в связи с этим ее транспорт осуществляется в основном путем диффузии из плазмы.

Однако при некоторых состояниях, сопровождающихся недонасыщением крови кислородом (гипоксемия), традиционный транспорт углекислого газа может дополняться и транспортом в связанном состоянии с гемоглобином.

– Также рекомендуем “Транспорт газов в организме. Особенности дыхательной системы человека”

Оглавление темы “Контроль обмена газов у пациента”:

1. Метаболизм в организме. Значение кислорода

2. Дыхательная или респираторная система. Гемоглобин и углекислый газ

3. Транспорт газов в организме. Особенности дыхательной системы человека

4. Механизмы транспорта газов. Физиология дыхания – кислородный каскад

5. Диффузия газов. Транспорт кислорода из атмосферы в альвеолы

6. Влияние ЦНС на обмен кислорода. Градиент напряжения кислорода

7. Нарушение напряжения кислорода в альвеолярном газе. Факторы влияющие на напряжение кислорода в альвеолах

8. Транспорт кислорода из альвеол в капилляры. Функции аэрона

9. Диспропорции транспорта кислорода в легких. Нарушения функций аэрона

10. Нарушение альвеоло-артериального градиента кислорода. Транспорт кислорода к тканям

Источник

Гемоглобин выводит углекислый газ

Одним из самых сложных процессов, что происходят в организме человека, несомненно, является дыхание. И сложность эта не только в танце легких, благодаря которому человек получает кислород, но и в процессах, с помощью которых этот кислород проникает дальше, в ткани, где превращается в углекислый газ, что отправляется в обратное путешествие. О данных процессах и пойдет речь далее.

Итак, приступим. Человек делает вдох, иии… Далеко не весь кислород поступает в легкие, а затем и в кровь. Часть вдыхаемого воздуха остается в так называемом мертвом пространстве. Мертвое пространство, в свою очередь, делится на анатомическое (дыхательные пути), в котором остается около 30 % вдыхаемого воздуха, и функциональное (вентилируемые, но по каким-то причинам не перфузируемые альвеолы).

Читайте также:  Какой должен быть гемоглобин у беременных на 38 неделе беременности

Ухудшение альвеолярного газообмена может происходить при неглубоком и частом дыхании (причиной может стать перелом ребер, паралич дыхательной мускулатуры различного генеза и др.), а также при увеличении мертвого пространства, вызванном разнообразными причинами (нарушение перфузии альвеол в результате воспалительных заболеваний легких, удаление доли или целого легкого и др.), при снижении скорости кровотока по альвеолярным капиллярам (ТЭЛА, инфаркт легкого), при наличии диффузионного барьера (отек легких) и в результате ослабления альвеолярной вентиляции при обтурации просвета бронха. Газообмен между легкими и кровью происходит путем диффузии в соответствии с законом Фика. В легочных капиллярах она происходит за счет разности парциальных давлений в альвеолах и эритроцитах.

В альвеолах парциальное давление кислорода значительно превышает таковое для углекислого газа и составляет примерно 13,3 кПа (100 мм рт. ст.) и 5,3 кПа (40 мм рт. ст.) соответственно. Альвеолы омываются приносимой легочными артериями венозной кровью, в которой соотношение парциальных давлений этих двух газов обратно пропорционально и составляет приблизительно 5,3 кПа (40 мм рт. ст.) для кислорода и 6,1 кПа (46 мм рт. ст.) для углекислого газа. В среднем разница парциальных давлений составляет около 8 кПа (60 мм рт. ст.) для кислорода и около 0,8 кПа для углекислого газа.

Как уже было сказано выше, кислород путем диффузии проникает в кровь легочных капилляров. Диффузионное расстояние для кислорода при этом составляет 1–2 мкм, то есть именно на такое расстояние он проникает внутрь капилляра. Обмен крови в легочном капилляре происходит примерно за 0,75 секунды, но этого времени хватает на то, чтобы парциальные давления в альвеолах и в крови пришли в равновесие.

Кровь, в которой показатели парциального давления для кислорода и углекислого газа примерно равны таковым в альвеолах, называется артериализированной. Однако за счет наличия в легких артериовенозных шунтов и притока венозной крови из бронхиальных вен такой она остается недолго. В результате парциальное давление кислорода в аорте составляет примерно 12,0 кПа (как уже было сказано выше, парциальное давление в артериализированной крови равно таковому в альвеолах и составляет 13,3 кПа), а давление углекислого газа меняется незначительно и не приводит к затруднению его диффузии из крови в альвеолы.

Но кислород непосредственно в ткани попадает лишь в крайне незначительных количествах: для свободного перемещения по организму ему необходим транспортер. Эту функцию выполняет содержащийся в эритроцитах белок — гемоглобин. Гемоглобин существует в оксигенированной и неоксигенированной формах. В дезокси-гемоглобине железо находится на уровне порфиринового кольца и стабилизируется электростатическими силами, что обеспечивает поддержание всей структуры. Появившись, кислород начинает «тянуть» за железо, которое переносится на проксимальный гистидин на другом конце полипептидной цепи и меняет структуру всего протеина.

В результате гемоглобин переходит в оксигенированную форму, альфа- и бета-цепи при этом поворачиваются относительно друг друга на 15 градусов, облегчая присоединение остальных молекул кислорода. В итоге каждый из четырех содержащихся в нем атомов двухвалентного железа обратимо связывается с молекулой кислорода, что превращает молекулу гемоглобина в оксигемоглобин. По сравнению с миоглобином гемоглобин имеет низкое сродство к кислороду, однако оно не статично. Так, миоглобин может связывать кислород только одним участком, поэтому кривая его связывания — гипербола. Кривая связывания гемоглобина с кислородом имеет S-образную форму, демонстрируя, что при его связывании с первой молекулой кислорода гемоглобин имеет очень низкое сродство к кислороду, но при связывании последующих молекул кислорода сродство остальных его субъединиц к нему значительно увеличивается и в конечном счете повышается примерно в 500 раз.

Гемоглобин выводит углекислый газ

При этом альфа-цепи связывают кислород легче, чем бета-цепи. Этот процесс назван кооперативным взаимодействием. По мере снижения парциального давления кислорода в крови происходит его высвобождение из гемоглобина и поступление в ткани. Например, парциальное давление кислорода в работающих мышцах составляет всего 26 мм рт. ст, и при прохождении эритроцитов через капилляры, кровоснабжающие мышцы, происходит высвобождение и поступление в мышечные клетки примерно ⅓ всего переносимого гемоглобином кислорода. При повышении температуры тела также возрастает потребность в кислороде, что, в свою очередь, стимулирует высвобождение и поступление его в ткани. При снижении температуры, напротив, развивается гипоксия тканей, способствующая компенсаторному увеличению сродства гемоглобина к кислороду.

Читайте также:  Кормящая мама гемоглобин низкий

Гемоглобин также осуществляет перенос от тканей к легким продуктов тканевого дыхания — углекислого газа и ионов водорода. В ходе окислительных процессов в клетке выделяется углекислый газ, в результате гидратации которого образуются ионы водорода, что, в свою очередь, приводит к снижению рН. Давно известно, что снижение рН и повышение концентрации углекислого газа в крови оказывает сильное влияние на способность гемоглобина связывать кислород.

Гемоглобин выводит углекислый газ

В периферических сосудах показатели рН низкие, и по мере связывания гемоглобина с ионами водорода и углекислым газом происходит снижение его сродства к кислороду. Это влияние величины рН и концентрации углекислого газа на способность гемоглобина связывать кислород называют эффектом Бора.

Обратная ситуация имеет место в альвеолярных капиллярах, где присоединение кислорода к гемоглобину превращает тот в более сильную кислоту.

При этом сродство гемоглобина к углекислому газу снижается, а повышение кислотности гемоглобина приводит к высвобождению излишка ионов водорода и образованию в крови из бикарбоната угольной кислоты, которая затем распадается на воду и углекислый газ. В обоих случаях углекислый газ из крови поступает в альвеолы, а затем в атмосферу. Данный процесс назван эффектом Холдейна. Стоит отметить, что важную роль в образовании углекислого газа в эритроцитах играет ион хлора, поступающий в плазму крови в обмен на бикарбонат при участии белка-переносчика АЕ1. Данный процесс в англоязычной литературе получил название «Chloride shift» или «перенос Хамбургера».

На сродство гемоглобина к кислороду оказывает влияние и присутствующее в эритроцитах вещество, получившее название 2,3-бисфосфоглицерат (БФГ). Его образование — своего рода побочная реакция анаэробного гликолиза, происходящего в эритроцитах в ходе ферментативного превращения глюкозы в пируват под действием фермента бифосфоглицератмутазы. БФГ способен самостоятельно связываться с неоксигенированной формой гемоглобина, образуя солевой мостик между двумя его бета-субъединицами и снижая сродство к кислороду.

При этом гемоглобин способен связать только одну молекулу БФГ, а при присоединении кислорода БФГ вытесняется из полости. В обычных условиях в эритроцитах крови содержится достаточно большое количество БФГ, которое может увеличиваться в условиях гипоксии (например, у дайверов при погружении на глубину), а также при восхождении на большую высоту. В первые часы подъема концентрация БФГ в эритроцитах будет возрастать, а сродство кислороду снижаться. Но на большой высоте парциальное давление будет значительно ниже такового на уровне моря, а значит, оно снизится и в тканях. При этом БФГ будет облегчать передачу кислорода от гемоглобина к тканям.

Гемоглобин выводит углекислый газ

Некоторые вещества способны прочно связываться с гемоглобином или же вовсе менять его структуру. Одним из них является угарный газ, чье сродство к гемоглобину в 200 раз превышает таковое для кислорода. Отравления угарным газом часто происходят в помещениях с печным отоплением, при пожарах и авариях на производстве. Со временем кислород вытесняет угарный газ из гемоглобина, и в легких случаях пациенты помещаются под наблюдение и получают ингаляции с увлажненным кислородом. Необходимой мерой при тяжелых отравлениях угарным газом является переливание эритроцитарной массы.

К веществам, способным изменять структуру гемоглобина, относятся метгемоглобинобразователи — соединения, способные окислять двухвалентное железо в геме до трехвалентного. К ним относятся нитриты, нитраты, некоторые местные анестетики, аминофенолы, хлораты, примахин и некоторые сульфаниламиды. Состояние, характеризующееся появлением в крови окисленного гемоглобина, называют метгемоглобинемией. При высокой метгемоглобинемии капля крови, помещенная на фильтровальную бумагу, имеет характерный коричневый цвет, а при пропускании кислорода через пробирку с такой кровью ее цвет не меняется. Метгемоглобинемия выше 70 % от общего содержания гемоглобина часто приводит к гибели пациента еще до момента постановки диагноза.

Источники:

  1. Harrison’s hematology and oncology Longo, Dan L (Dan Louis), Third edition. New York : McGraw-Hill Education Medical, 2017.
  2. Наглядная физиология, С. Зильбернагль, А. Деспопулос, 2013.
  3. Ленинджер А. Основы биохимии: В 3-х т. Т. 1. /Д. Нельсон, М. Кокс ; Пер. с англ.-М.: БИНОМ: Лаборатория знаний, 2011.- 694 с.

Источник

Общеизвестно, что мы при дыхании потребляем кислород и выдыхаем CO2. Однако, задумывались ли вы о том, почему именно углекислый газ?

Источник изображения:baomoi.com

Клеточное дыхание

Дыхательная система человека. Дыхание – это процесс потребления кислорода и выделение углекислого газа. Источник изображения: studfiles.net

Читайте также:  Норма гемоглобина у пожилого

Говоря о дыхании, первое, что приходит на ум – это наши нос, рот, горло и легкие. Однако, есть еще понятие “клеточное дыхание”. Как следует из названия – это то, что происходит на клеточном уровне в наших телах. Более конкретно, это куча метаболических процессов и реакций, которые протекают в клетках организма для преобразования биохимической энергии, полученной из жизненно важных питательных веществ в источник энергии для поддержания клеточной активности.

Расщепление глюкозы. Источник изображения: MyShared.ru

Хотя многие биохимические реакции происходят в наших телах все время, то, что происходит внутри наших клеток и отвечает за выработку энергии, вероятно, является самым важным из всего. Реагентами, участвующими в этой реакции, в основном, являются сахара, углеводы, жиры и белки, и поскольку это происходит в присутствии кислорода, то известно как аэробное дыхание.

Эта биохимическая реакция протекает в клетках наших тел, в ее процессе выделяется газообразный диоксид углерода (углекислый газ) в качестве побочного продукта. Именно так он образуется внутри тела. Поскольку глюкоза, жиры и белки используются в качестве источников топлива для этой реакции, скорость производства двуокиси углерода ниже, чем скорость потребления кислорода. Говоря простыми словами, мы производим меньше двуокиси углерода, чем количество потребляемого нами кислорода.

Как углекислый газ удаляется из организма?

Всем известно, что углекислый газ в высоких концентрациях ядовит для нас. Следовательно, он должен быть надлежащим образом удален из организма.

Это достигается с помощью трех основных биологических процессов: молекулы углекислого газа растворяются непосредственно в крови, связываются с белками (в частности, гемоглобином в крови) или посредством бикарбонатного буфера. В рамках этой статьи нас больше интересуют первые два процесса.

1. Растворение СО2 в крови

Из-за определенных химических свойств углекислого газа, он гораздо более растворим в крови человека, чем кислород. Это свойство очень удобно для удаления углекислого газа из клеток, в которых он образовался. Растворенный диоксид углерода переносится в легкие, где альвеолы ​​выводят его из крови, после чего мы выдыхаем его в атмосферу.

Легочные альвеолы при вдохе насыщают кровь кислородом, при выдохе выводят из крови углекислый газ. Источник изображения: tustareas.lat

2. Удаление двуокиси углерода с помощью гемоглобина.

Молекулы углекислого газа также могут проникать в эритроциты и связываться с гемоглобином – белком в крови, который переносит кислород по всему телу.

Когда углекислый газ связывается с гемоглобином , то образуется молекула, называемая карбаминогемоглобином. Он отвечает за 30% от общего количества диоксида углерода, присутствующего в организме человека. Поскольку такая связь углекислого газа и гемоглобина является обратимым процессом, молекулы углекислого газа отделяются от гемоглобина, когда они достигают легких. Тут снова, газообмен происходит в альвеолах – они насыщают кровь кислородом и удаляют из нее углекислый газ, который в последствии мы выдыхаем.

Еще около 60% углекислого газа в организме транспортируется в крови в виде бикарбонатных ионов (гидрокарбонат) в составе бикарбонатной буферной системы, которая регулирует баланс ионов двуокиси углерода, угольной кислоты и бикарбоната.

Источник изображения: en.ppt-online.org

Бикарбонатная буферная система поддерживает на должном уровне рН крови для нормального протекания различных метаболических процессов в организме.

Таким образом, углекислый газ вырабатывается в организме в результате клеточного дыхания, при котором жизненно важные питательные вещества в присутствии кислорода преобразуются в энергию. Выделенный CO2 затем удаляется из тела путем растворения в крови и связывания с гемоглобином. После этого вместе с кровью он переносится в легкие, откуда уже при выдохе он удаляется через нос и рот.

В заключение, несколько фактов о дыхании:

Ежедневно мы делаем около 23000 вдохов и еще столько же выдохов.

За час вы выдыхаете от 5 до 20 литров СО2 (зависит от скорости обмена веществ) и около пятидесяти граммов воды.

Вместимость левого легкого ниже, чем у правого.

Если часто выдыхать через рот, а вдохи делать через нос, то в организме может произойти нарушение баланса СО2.

А что вам интересного известно о дыхании? Напишите об этом в комментариях

Если Вам понравилась статья , поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник