Гены гемоглобина и их экспрессия

Гены гемоглобина и их экспрессия thumbnail

Гены гемоглобина человека

Кроме НbА, у человека есть еще пять других нормальных гемоглобинов, которые имеют тетрамерные структуры, сравнимые с НbА и состоящие из двух а- или а-подобных цепей и двух не-b-цепей. Гены а- и а-подобных цепей расположены тандемно в хромосоме 16, а для b- и b-подобных — в хромосоме 11. В каждой копии хромосомы 16 есть два идентичных гена а-глобина, названные а1 и а2. В пределах комплекса генов b-глобина существует тесная гомология между разными генами. Например, b- и q-глобины отличаются только 10 из 146 аминокислот. Все гены глобина, несомненно, возникли из общего гена-предшественнника.

Изменение экспрессии различных генов глобина в ходе развития иногда называют переключением глобинов. Это классический пример упорядоченного регулирования экспрессии генов в ходе развития. Гены в а- и b-группах размещаются в одной и той же транскрипционной ориентации и, что замечательно, гены внутри каждой группы расположены в той же последовательности, в которой они экспрессируются в процессе развития. Существует эквимолярное соответствие синтеза а- и b-подобных цепей глобина.

Интересно, что переключение синтеза глобинов по времени сопровождается изменениями в основном месте эритропоэза. Эмбриональный синтез глобина происходит в желточном мешке с 3 по 8 нед гестации, но приблизительно около 5 нед гестации основное место кроветворения начинает перемещаться из желточного мешка в печень плода. HbF (а2у2) — преобладающий гемоглобин в внутриутробном периоде — составляет приблизительно 70% общего гемоглобина при рождении, но во взрослой жизни HbF составляет менее 1% общего гемоглобина.

Хотя b-цепи могут обнаруживаться на ранних сроках гестации, их синтез становится значимым только ближе к сроку родов; к 3-месячному возрасту почти весь гемоглобин становится гемоглобином взрослого типа — HbА. Синтез 8-цепи также продолжается после рождения, но НbА2 (а2q2) никогда не составляет более примерно 2% гемоглобина взрослых. К несчастью, небольших количеств q-глобина (и, следовательно, HbA2) и у-глобина (и, следовательно, HbF), обнаруживаемых в норме в крови взрослого человека, недостаточно для компенсации сниженного количества b-глобина (и, следовательно, НbА), образующегося при болезнях типа b-талассемии. Следовательно, знание механизмов, регулирующих производство цепей глобина, потенциально имеет терапевтическое значение. Обнаружено множество факторов транскрипции, управляющих экспрессией генов глобина, что дает надежду на разработку лечения, направленного на увеличение синтеза q- и у-глобинов.

гены гемоглобина

Регулирование экспрессии генов b-глобина: управляющий регион локуса

Как и во многих других областях медицинской генетики, изучение механизмов, регулирующих экспрессию генов глобина, дало понимание как нормальных, так и патологических биологических процессов. Экспрессия гена b-глобина, как оказалось, только частично контролируется промотором и двумя энхансерами в фланговой ДНК, расположенной непосредственно рядом с геном. Необходимость дополнительных регулятор-ных элементов была заподозрена после идентификации уникальной группы пациентов, не имевших экспрессии ни одного гена в группе b-глобина, даже если сами гены (включая их индивидуальные регуляторные элементы) были неповрежденными. Оказалось, что такие пациенты имеют большие делеции выше комплекса b-глобина, удаляющие область приблизительно в 20 килобаз, названную локус-контролирующей областью (LCR, от англ. locus control region), которая начинается приблизительно в 6 килобазах выше гена е-глобина.

Развивающаяся при этом болезнь, еу5р-талассемия, описана ниже. Данные пациенты показали, что LCR необходим для экспрессии всех генов в группе b-глобина в хромосоме 11.

LCR определяется пятью сверхчувствительными к ДНКазе 1 участками, необходимыми для поддержки открытой конфигурации хроматина в данном локусе, что обеспечивает доступ факторам транскрипции к элементам, регулирующим экспрессию каждого гена в комплексе b-глобина. LCR вместе с ассоциированными связанными с ДНК белками, взаимодействует с генами локуса, формируя часть ядра, названную «транскрипционным узлом» (англ. active chromatin hub), в котором происходит экспрессия генов b-глобина.

Последовательное переключение экспрессии генов, происходящее между пятью участниками комплекса гена b-глобина в ходе развития, вызвано последовательной ассоциацией транскрипционного узла с разными генами в группе, так как узел перемещается от 5′-конца комплекса (от экспрессирующегося в эмбриональном периоде гена e-глобина) через ген q до гена b-глобина у взрослых.

Клиническое значение LCR разнообразно. Во-первых, пациенты с делециями LCR не экспрессируют гены группы b-глобина. Во-вторых, компоненты LCR, вероятно, окажутся существенными для генотерапии болезней группы b-глобина. В-третьих, знание молекулярных механизмов, лежащих в основе переключения глобинов, может сделать выполнимой, например, регуляцию экспрессии гена у-глобина у пациентов с b-талассемией (с мутациями в гене р-глобина), для стимуляции синтеза HbF (a2y2), — эффективного переносчика кислорода у взрослых с дефицитом НbА (а2b2).

Для понимания патогенеза большинства гемоглобинопатий важны различия в дозе генов (четыре гена а-глобина и два гена b-глобина на диплоидный геном) и онтогенез а- и b-глобинов. Мутации в генах b-глобина более вероятно вызывают болезнь, чем мутации а-цепи, поскольку мутация единственного гена b-глобина влияет на 50% р-цепей, тогда как мутация одного гена а-цепи влияет только на 25% a-цепей. С другой стороны, мутации в гене b-глобина не имеют последствий во внутриутробном периоде, поскольку у-глобин является основным глобином до рождения, и к моменту родов HbF составляет три четверти общего гемоглобина. Поскольку а-цепи — единственный а-подобный компонент всех гемоглобинов, начиная с 6 нед после зачатия, мутации а-глобина вызывают тяжелую патологию как плода, так и послеродовой жизни.

– Вернуться в содержание раздела “генетика” на нашем сайте

Оглавление темы “Выявление генов болезни”:

  1. Непараметрический анализ связи признаков (болезней) в генетике
  2. Оценка ассоциации гена с болезнью
  3. Геномные ассоциации и карта гаплотипов. Tag SNP
  4. Позиционное клонирование аутосомно-рецессивного заболевания. Гены муковисцидоза
  5. Позиционное клонирование многофакторного заболевания. Гены болезни Крона
  6. Гены возрастной дегенерации макулы. Особенности картирования
  7. Молекулярные болезни (патология). Биохимическая генетика
  8. Влияние мутации на функции белка. Примеры
  9. Структура и функция гемоглобина
  10. Гены гемоглобина человека

Источник

  • Авторы
  • Файлы

Кривенцев Ю.А.

Никулина Д.М.

Бисалиева Р.А.

Борисова Н.В.

Бисалиев Р.В.

Гемоглобины человека изучаются уже на протяжении почти века, но, тем не менее, эмбриональный гемоглобин (HbP, синоним – HbE) является одним из самых малоизученных белков человеческого организма. Сведения о HbP в научной литературе до сих пор крайне скудны. Такой парадоксально низкий интерес ученых к этому белку можно объяснить следующими причинами: а) методологический фактор: получение препарата HbP крайне затруднительно из-за сложностей получения биоматериала (HbP синтезируется только в раннем эмбриогенезе, с 5 по 18 гестации), экстрагирования и очистки белка; б) практический фактор: по мнению большинства клиницистов, данный белок не представляет прикладной (диагностическо-прогностической) ценности, т.к. активность его гена полностью репрессирована как у детей, так и у взрослых [1, 2, 3, 6].

В данной работе авторы исходили из предположения, что активация ε-гена HbP в постнатальном периоде жизни человека возможна при патологии, связанной с понижением степени дифференцировки, т.н. «омоложением» клеток эритроцитарного ростка [4]. К таким состояниям можно отнести некоторые онкологические заболевания тканей красного костного мозга, в первую очередь, эритремии, сублейкемические миелозы, а также, возможно, некоторые миелолейкозы.

Цель исследования – иммунохимический качественный анализ наличия эмбрионального гемоглобина в эритроцитах больных эритромами, сублейкемическими миелозами и лейкозами различных типов.

В процессе научно-экспериментального исследования физико-химических свойств эмбрионального гемоглобина авторами разработан оптимальный алгоритм выделения этого белка [4].

Исходным биоматериалом для выделения и очистки HbP служил абортивный материал сроком 7-9 недель (отделение неонатологии больницы №5 г. Астрахани). После промывки и сортировки эмбриональные ткани подвергались механически-термической гомогенизации. После экстрагирования цитозольных белков проводили, взвесь центрифугировали при 8000 g в течение 30 мин, после чего осадок отбрасывали. Поскольку устойчивость эмбрионального гемоглобина несколько ниже, чем у фетального [6], для очистки HbP нами была модифицирована стандартная методика щелочной денатурации для выделения фетального гемоглобина [3, 6], состоящая в 40-секундной обработке смеси 1,2 М раствором NaOH, с последовательным осаждением белков раствором сульфата аммония (до 50%-й насыщенности). После центрифугирования при 8000 об/мин в течение 30 мин осадок отделяли. В надосадочной жидкости оставался эмбриональный гемоглобин с незначительным количеством белковых примесей. Полученный белковый препарат подвергали обессоливанию путем гель-проникающей хроматографии на колонке с сефадексом G-25, рабочий буфер – 0,05 М фосфатный буферный раствор рН 7,4. Окончательную очистку HbP от оставшихся щелочеустойчивых компонентов в полученном на предыдущем этапе препарате проводили путем ионообменной хроматографии на ДЕАЕ-сефадексе G-50 на 0,01 М трис-хлоридном буфере рН 8,1 в градиенте ионной силы.

Анализ чистоты полученных препаратов осуществляли методом вертикального электрофореза в полиакриламидном геле.

Полученные очищенные препараты HbP использовали, в частности, для получения специфических антисывороток на данный белок методом иммунизации кроликов. Иммунизация проводилась с полным адьювантом Фрейнда по стандартной методике [5]. Для контроля качества антисывороток проводили их иммунохимическое сопоставление с другими антигенными композитами, а также специфическую окраску полученных преципитатов бензидиновым методом [6]. При наличии дополнительных линий преципитации проводили дробное истощение антисыворотки соответствующей белковой фракцией. В результате проведенной работы разработаны специфические иммунохимические тест-системы на эмбриональный гемоглобин, в которой тест-антигеном является очищенный препарат HbР (полученный вышеописанным способом) в рабочем разведении: 1/2 или экстракт тканей эмбриона (срок – 6-9 недель) в рабочем разведении 1/8-1/16. Тест-системы на использовали для иммунохимической индикации HbP в исследуемом материале.

Объектом нашего исследования являлась гепаринизированная кровь больных некоторыми гематологическими онкозаболеваниями. Всего было обследовано 107 образцов крови. Из них: 12 больных эритромами, 11 больных сублейкемическими миелозами, 31 больных острыми и хроническими миелолейкозами, 17 больных острыми и хроническими лимфолейкозами, а также 36 образцов крови здоровых людей (группа контроля) (табл.1).

Сбор биоматериала проводили в гематологическом отделении 1-й областной больницы г. Астрахань.

Подготовка проб к анализу состояла в их предварительном гемолизе путем двухкратного замораживания (при -180С) и оттаивания.

Таблица 1 Перечень использованного в работе материала

Исследуемый материал (кровь)

Количество проб

Здоровые

36

Больные эритремиями

12

Больные сублейкемическими миелозами

11

Больные хроническими миелолейкозами

22

Больные острыми миелолейкозами

9

Больные острыми и хроническими лимфолейкозами

17

ВСЕГО

107

Индикация HbP в образцах осуществлялась путем иммунодиффузии по Оучтерлони [5]. В ходе работы использовались моновалентные иммунохимические тест-системы на HbP (см. выше).

После иммунопроявления агаровые стекла высушивали и подвергали специфическому окрашиванию на гемоглобины гваяколовым методом, модифицированным авторами: 0,2 г гваякола в 50 мл ледяной уксусной кислоты, затем добавляли этот раствор в 0,1М ацетатный буфер рН 4,6 с 0,2% хлоридом марганца (II) до 0,3% концентрации. Туда же добавляли перекись водорода до концентрации 1%. Экспозиция 45 мин. В результате окраски гемоглобиновые преципитаты приобретали голубой цвет.

Стекла фотографировали в отраженно-рассеянном свете. Считывание результатов проводили только по отчетливым окрашенным линиям преципитации.

Статистическая обработка результатов проводилась с использованием статистических компьютерных программ.

В результате проведенного иммунохимического анализа исследуемого материала на эмбриональный гемоглобин методом радиальной иммунодиффузии по Оухтерлони получены следующие результаты (табл. 2).

Как видно из приведенных данных, эмбриональный гемоглобин впервые выявлен в крови больных эритремиями, хроническими эритромиелозами, сублейкемическими миелозами и острыми миелолейкозами. Эти данные свидетельствуют о возможности дерепрессии гена ε-протомера (гена эмбрионального гемоглобина) при снижении дифференцировки клеток эритроцитарного ростка, сопровождающей онкологические заболевания данной ткани. Нулевая выявляемость HbP в крови гематологических больных с онкопатологией неэритроидного генеза (острые и хронические лимфолейкозы) согласуется с приведенной версией.

Таблица 2 Результаты иммунохимической индикации HbP в крови онко-гематологических больных

Исследуемый материал

Количество проб

Количество положительных результатов на HbP

Процент положительных результатов на HbP

Здоровые

36

0,0

Больные эритремиями

12

8

66,67

Больные сублейкеми-ческими миелозами

11

4

36,36

Больные хроническими миелолейкозами

22

1

4,55

Больные острыми миелолейкозами

9

2

22,22

Больные острыми и хроническими лимфолейкозами

17

0,0

Таким образом, полученные результаты свидетельствуют о том, что иммунохимическая индикация эмбрионального гемоглобина в крови гематологических больных способствует повышению качества дифференциальной диагностики ряда онко-гематологических заболеваний.

СПИСОК ЛИТЕРАТУРЫ:

  1. Гипоксия. Адаптация, патогенез, клиника. – СПб, ООО “ЭЛБИ-СПб”, 2000. – 384 с.
  2. Зайчик А.Ш., Чурилов Л.П. Основы патохимии – СПб. «Элби-СПб». – 2000. – 182 с.
  3. Карпищенко А.И. – Медицинские лабораторные технологии и диагностика / А.И. Карпищенко. – Справочник, т 1, С. Петербург, 1998. – 144 с.
  4. Кривенцев Ю.А., Бисалиева Р.А., Никулина Д.М., Краморенко П.В., Семенова Т.Б. – Иммунохимический анализ продукции эмбрионального гемоглобина в раннем эмбриогенезе человека / Материалы научно-практической конференции с международным участием «Достижения фундаментальных наук в решении актуальных проблем медицины». – Астрахань-Волгоград-Москва. – 2006. – С.58-62.
  5. Никулина Д.М. – Практическое освоение иммунохимических методов / Метод. рекомендации. – Астрахань, – 1996. – 36 с.
  6. Стародуб Н.Ф., Назаренко В.И. – Гетерогенная система гемоглобина: структура, свойства, синтез, биологическая роль / АН УССР, Институт молекулярной биологии и генетики. Киев: Наукова думка, 1987. – 198 с.

Библиографическая ссылка

Кривенцев Ю.А., Никулина Д.М., Бисалиева Р.А., Борисова Н.В., Бисалиев Р.В. ЭКСПРЕССИЯ ε-ГЕНА ЭМБРИОНАЛЬНОГО ГЕМОГЛОБИНА ПРИ ГЕМАТОЛОГИЧЕСКОЙ ПАТОЛОГИИ // Успехи современного естествознания. – 2007. – № 1. – С. 72-74;
URL: https://natural-sciences.ru/ru/article/view?id=10865 (дата обращения: 22.08.2020).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Источник

Молекулы гемоглобина- тетрамеры , содержащие по 2 пары гемоглобиновых цепей различного типа.

В ходе развития организма наблюдают образование различных вариантов Нв в зависимости от экспрессии разных глобиновых типов.

Различают:

1. Эмбриональный Нb – состоит из 2ζ(дзета) цепей и 2 ε(эпсилон)

2. Фетальный Нb – состоит из 2α(альфа) и 2γ (гамма)

3. Нb взрослых – состоит из 2α(альфа) и 2 β(бетта)

В течении 2 месяца беременности снижается синтез ζ и ε цепей, а усиливается синтез α и γ.- образуется фетальный гемоглобин.

На 3 месяце беременности активируются гены β и δ (дельта) цепей глобина, тогда как концентрация γ падает, это переключение ускоряется и фетальный гемоглобин заменяется на взрослый.

Преобладающим типом гемоглобина является гемоглобинА (α2β2), α и β цепи различаются по многим аминокислотным остаткам.

У всех взрослых помимо Нв-А, еще и Нв-А2 (α2δ2), характерная для А2 δ цепь отличается от β цепи только по 10 аминокислотным остаткам.

Около 1% фетального Нв может присутствовать и во взрослом организме.

γ цепь значительно отличается от α и β и обладает бОльшим сродством к кислороду, так как плод получает кислород через плаценту(но там содержание не высокое), поэтому фетальный Нв содержит γ цепь.

Известно 2 типа γ цепей:

1) С аланином

2) С глицерином в 136 положении.

Ζ цепи похожи по аминокислотному составу на α , а ε цепей на β.

Синтез γ цепей у эмбриона происходит в печени, селезенке и костном мозге.

Синтез β цепей происходит в костном мозге.

Все глобиновые цепи имеют общее эволюционное развитие, возникают в последствии дупликации генов и их дальнейшей модификации. Синтез небелковых гемогрупп также кодируется генами(т к они кодируют структуру ферментов обеспечивающих биосинтез гемма).

Глобиновые гены распологаются в 11 и 16 хромосомах. И образуют α и β подобные кластеры.

Α подобные кластеры располагаются в коротком плече 16 хромосомы, а β подобные кластеры в коротком плече 11 хромосомы

Структурные гены расположены в порядке от 5’ к 3’ концу.

Все глобиновые гены имеют по 3 экзона(информативные участки) и 2 интрона (неинформативные участки),интроны транскрибируются вместе с экзонами, поэтому они есть в первичном транскрипте.

Процессинг- созревание первичного транскрипта( интрены вырезаются, экзона сшиваются).

Гемоглобинопатии – это группа патологических состояний, обусловленные нарушениями структуры цепей глобина (заменой одной или нескольких аминокислот в цепи глобина, отсутствие участка цепи или ее удлинением.)

Существуют четыре основных типа болезней гемоглобина:

1. Гемолитические анемии, вызванные нестабильностью гемоглобина.

2. Метгемоглобинемии, обусловленные ускоренным окислением гемоглобина.

3. Эритроцитоз, вызванный нарушением сродства гемоглобина к кислороду.

4. Серповидно-клеточные нарушения как следствие повреждений клеточных мембран эритроцитов.

Гемолитические анемии. Они вызываются нестабильными формами гемоглобина. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Нестабильность может быть едва заметной, что не имеет никаких клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. Нестабильность часто обусловлена преждевременной диссоциацией гема и глобиновых цепей. Точный диагноз может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В таком случае необходимо выделение глобиновых цепей для дальнейшего анализа в специализированных лабораториях.

Метгемоглобинемия, обусловлена ускоренным окислением двухвалентного железа до трехвалентного. Больные с мутацией в α–цепи, вызывающими образование HbМ, страдают цианозом от рождения. При мутации в β-цепи цианоз развивается только через 6 месяцев после рождения, когда происходи замена γ–цепи на β-цепь.

Эритроцитоз, вызванный образованием гемоглобинов с нарушенным сродством к кислороду. Существует около 30 гемоглобинов с повышенным сродством к кислороду.

Повышенное сродство к кислороду приводит к уменьшению количества кислорода, освобождающегося из комплекса с гемом в тканях организма, и вызывает гипоксию. Гипоксия ведет к выделению гормона эритропоэтина, стимулирующего образование эритроцитов и собственно эритроцитоз.

Было обнаружено всего три гемоглобина с уменьшенным сродством к кислороду. При таком дефекте количество кислорода, поступающее в ткани, увеличивается, поэтому следует ожидать уменьшение синтеза эритропоэтина. В двух случаях, как и следовало ожидать, наблюдалась слабовыраженная анемия.

Серповидно-клеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа).

Эритроциты, несущие гемоглобин S, обладают пониженной стойкостью и пониженной кислород-транспортирующей способностью, поэтому у больных с серповидноклеточной анемией повышено разрушение эритроцитов в селезенке, укорочен срок их жизни, повышен гемолиз и часто имеются признаки хронической гипоксии (кислородной недостаточности) или хронического «перераздражения» эритроцитарного ростка костного мозга.

Больные серповидноклеточной анемией обладают повышенной (хотя и не абсолютной) врождённой устойчивостью к заражению различными штаммами малярийного плазмодия.

Симптомы серповидноклеточной анемии делятся на две основные категории. Из-за хрупкости красных клеток крови всегда наблюдается анемия, которая может привести к потере сознания, делает больного физически менее выносливым и может вызвать жел­туху (связанную с чрезмерным распадом гемогло­бина).

Источник

Читайте также:  Почему повышен гемоглобин в крови у ребенка