Глобин в составе гемоглобина

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Читайте также:  Низкий гемоглобин у ребенка в год какие лекарства давать

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; KE van Holde & KG Ahern (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & C Chothia (1976), “Structural patterns in globular proteins”, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

    Гемин и хлорофилл. Особенно важными производными пиррола являются пигменты крови и зеленых растений. Красящее вещество крови, гемоглобин, играющий роль передатчика кислорода, является сложным белком. При гидролизе он распадается на протеин—глобин и небелковое вещество—гемин. В мо- [c.588]

    Хромопротеиды — вещества, в которых белковая часть соединена с красящим веществом. Представитель гемоглобин крови-, при гидролизе он расщепляется, образуя белок глобин (см. выше) и красящее вещество гем (стр. 420) красного цвета. [c.298]

    Гистоны—белки основного характера, так как содержат значительное количество диаминокислот со свободными аминогруппами они растворимы в воде и в разбавленных кислотах, но не растворимы в разбавленных щелочах. Обычно представляют собой собственно белковые части сложных белков. Представитель глобин — белок, входящий в состав сложного белка крови — гемоглобина. [c.297]

    Расщепление гемоглобина приводит к глобину и легко окисляющемуся г е м у, в котором железо еще двухвалентно. Ге.м способен связывать 2 молекулы основания (например, пиридина) и при этом образовывать так называемые г е м о х р о м о г е н ы гемоглобин можег рассматриваться как гемохромоген, в котором молекулы основания заменены белковой молекулой. [c.974]

    Глобин принадлежит к группе гистонов, так как он растворяется в разбавленных кислотах (изоэлектрическая точка 7,5). Примерно одну пятую часть молекулы белка составляют основные аминокислоты, среди которых преобладает лизин. В большинстае гистонов преобладает аргинин. Аминокислотный состав гемоглобина лошади приведен в табл. 42 (стр. 657). Содержание серы (щистива) в глобинах колеблется IB гемоглобине лошади— 0,39%. в гемоглобине кошки — 0,62%, в гемоглобине курицы — 0,86%. Гемоглобин здорового взрослого человека так же, как и гемоглобин лошади, не содержит изолейцина фетальный гемоглобин (HbF) содержит примерно восемь остатков этой аминокислоты. Гемоглобин S, который находится в крови больных серповидной анемией (болезнь, характеризующаяся массовым распадом эритроцитов), является продуктом врожденного нарушения нормального метаболизма. Гемоглобин S значительно менее растворим, чем гемоглобин А, его изоэлектрическая точка лежит заметно выше (на [c.671]

    Гемоглобин осуществляет перенос кислорода от легких к различным органам, в которых протекают реакции окисления. Молекула гемоглобина состоит из двух пар полипептидных цепей (их аминокислотная последовательность известна) и четырех гемов, соединенных слабыми связями с гло-биновой частью (см. гл. IV). Пятое и шестое лигандные места атома железа гема заняты двумя имидазольными группами гистидиновых остатков глобина. Гемоглобин обладает замечательной способностью вступать в обратимую реакцию с молекулярным кислородом, образуя оксигемоглобин, в котором кислород заменяет одну из имидазольных групп и становится шестым лигандом атома железа, причем само железо не окисляется. Метгемоглобин, в котором /келезо окислено до трехвалентного состояния, ие способен соединяться с кислородом. Помимо кислорода гемоглобин соединяется и с другими небольшими молекулами или ионами. Следует, в частности, отметить его способность образовать очень прочный комплекс с окисью углерода, чем и объясняется известная токсичность этого соединения. Гем служит коферментом и некоторых других белков, по своей биохимической [c.233]

Читайте также:  Сродство гемоглобина к кислороду уменьшается

    A. Гемоглобин — железопорфирины, связанные с белком глобином. Гемоглобины обладают способностью обратимо связывать кислород, они транспортируют этот газ в системе кровообращения (см. гл. 6). Структура гема показана на рис. 6.2. [c.356]

    Расположение неполярных аминокислотных остатков внутри белковой глобулы непосредственно доказывается рентгенографическими исследованиями структуры мии-глобина, гемоглобина, лизоцима. [c.290]

    Молекула гемоглобина построена как тетрамер из двух аналогичных глобинов (полипептидных цепей) неодинаковой длины. В центре белка находится простетическая группа, образованная [c.359]

    Кератин волос, ногтей, коллаген Глобин гемоглобина [c.285]

    Такие же результаты были получены при изучении глобинов — гемоглобина и миоглобина, участвующих в переносе и запасании кислорода. Степень сходства между молекулами гемоглобина у четырех видов приматов показана в табл. 26.7. Эволюционные связи между различными глобинами, предполагаемые на основе аминокислотных последовательностей (с указанием организмов, у которых они встречаются), представлены на рис. 26.18. Различия в аминокислотных последовательностях цитохрома с и этих глобинов возникли, по-видимому, в результате мутаций предковых генов. [c.304]

    Комплексообразователем в хлорофилле выступает магний, а в гемоглобине — железо. В одной плоскости с металлом располагаются четыре атома азота органического лиганда. По одну сторону от плоскости железо присоединяет молекулу белка (глобина), а по другую сторону — молекулу кислорода. Такой продукт называется оксигемоглобином. Он образуется в легких, где гемоглобин присоединяет кислород воздуха и далее в виде оксигемоглобина разносится по всему организму. В кровеносных капиллярах происходит отщепление кислорода, который используется для осуществления различных ферментативных процессов окисления органических веществ. Гемоглобин возвращается в легкие и снова участвует в переносе кислорода. Хлорофилл играет важнейшую роль в процессах фотосинтеза, протекающих во всех зеленых растениях. [c.154]

    Глобины гемоглобинов крови разных животных различны по составу и расположению в их молекулах аминокислот. Различаются они также серологически (стр. 37). Так, например, глобин человека не включает аминокислоты изолейцина, в то время как в глобине собаки его содержание составляет 1,36%. В глобине собаки и коровы содержатся различные количества метионина и т. д. Что же касается гема, то по своей химической структуре он один и тот же у различных позвоночных животных. Отсюда ясно, что видовая специфичность гемоглобинов обусловлена их белковыми компонентами. Глобины по содержанию в них диаминомонокарбоновых кислот относятся к гистонам. Молекулярный вес гемоглобина равен 67— 70 тысячам и в его молекуле содержатся четыре молекулы гема. Молекула гема включает один атом железа. [c.43]

    Красящее вещество крови. Красное красящее вещество крови, или гемоглобин, состоит из белковой части, глобина, и красящего компонента, гема, содержащего комплексно связанное железо. [c.974]

    Гемоглобин крови — сложное белковое вещество из группы хромопротеидов (стр. 298). Он состоит из растворимого в воде простого белка глобина (стр. 297) и красящего вещества гема, в котором содержится двухвалентное железо, комплексно связанное с порфири-новой группировкой. По современным представлениям, строение [c.420]

    Свободный гем легко окисляется на воздухе, превращаясь в гемин, железо которого трехвалентно. Соединяясь же с глобином, гем становится более устойчивым к окислению и, реагируя с кислородом, образует оксигемоглобин, в котором железо сохраняет двухвалентную форму. Этим объясняется и довольно легкое отщепление кислорода, присоединенного к гемоглобину. [c.144]

    Принятые обозначения г—гамма-глобулин. 50 мкг гп—гл —комплекс гаптот глобин-гемоглобин, 50 мкг гф—трансферрин, 25 мкг гл —гемоглобин а—альбумин. 25 мкг 01 —антитрипсин, 25 мкг па—преальбумин, 25 мкг. Результаты, полученные одним лишь электрофорезом в геле, приведенц справа. [c.338]

    В качестве примера белкового комплекса можно привести гемоглобин, являющийся хромопротеидом — комплексом белка глобина) с природным красителем (геном). [c.450]

    Комплексообразователем в хлорофилле выст пает магний, а в гемоглобине — железо. В одной плоскости с металлом располагаются четыре атома азота органического лиганда. По одну сторону от плоскости железо присоединяет молекулу белка (глобина), а по другую — молекулу кислорода. Такой продукт называется оксигемоглобином. Он образуется в легких, где гемоглобин присоединяет кислород воздуха и далее в виде оксигемоглобина разносится по всему организму. Хлорофилл играет важнейшую роль в процессах фотосинтеза, протекающих во всех зеленых растениях. [c.110]

    Разница заключается только в том, что у хлорофилла М = Мд +, а у гемоглобина — Ре +. Координационное число данных ионов равно б, поэтому по вакантным местам присоединяются еще две молекулы других веществ. Например, в гемоглобине по одну сторону хелата присоединяется молекула белка глобина, а по другую— молекула кислорода, благодаря чему это соединение является переносчиком кислорода в крови  [c.163]

    Гемоглобин переносит кислород из легких к тканям. Он построен из четырех пептидных субъединиц — двух а-глобинов и двух р-глобинов каждый глобин связан с гемом. Структура гемоглобина показана в виде [c.493]

    Гистидин — а-амино-Э-[4(5)-имидазолил] пропионовая Клота — входит в состав многих белков, в том числе глобина. гемоглобине за счет пиридинового атома азота имидазольного рагмента этой кислоты белок глобин связывается с атомом еЙеза гема (см. 10.1 и 11.3). [c.287]

    Большое значение имеет комплексообразование железа с биолигандами [2, с. 165—184]. Особенно важен гемоглобин — железосодержащая белковая молекула, выполняющая в крови животных и человека функции переносчика кислорода. Гемоглобин содержит белок глобин и четыре гема , представляющих собой порфириновый комплекс железа (II), где атом железа образует связь с четырьмя атомами азота порфиринового кольца и одну связь с атомом азота гистидина— аминокислоты, входящей в состав б1елка глобина. Шестое место в координационной сфере железа (II) может быть занято молекулярным кислородом О2, а также лигандами типа СО, СЫ и др. Если гемоглобин вступил во взаимодействие, например, с СО, он теряет способность обратимо присоединять О2. В таком случае организм погибает от гипоксии. Этим объясняется высокая токсичность СО, СК – и подобных им лигандов. [c.134]

    Хромопротеиды. Протеиды, содержащие, наряду с белковым компонентом, окрашенное соединение (пигмент). Простетическая группа отщепляется при нагревании с щелочами или кислотами. К этой группе относятся красные дыхательные пигменты эритроцитов позвоночных животных, представляющие соединения гема с белками типа гистонов — глобинами. Гемоглобины растворимы в воде и осаждаются или при полном насыщении, или при полунасыщении сернокислым аммонием. [c.177]

    Кобальт. Входит в состав витамина Bj (4, 5%), тироксина в глобин гемоглобина различных животных. При недостаточном обеспечении животных кобальтом развиваются акобальтоз (сухотка), гиповитаминоз и авитаминоз Bja- При этих забо.чеваниях характерно угнетенное состояние, потеря аппетита, нередко малокровие и прогрессирующее истощение, заканчивающееся гибелью животного. Наиболее чувствительны к кобальтовой недостаточности овцы и крупный рогатый скот. [c.453]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со “, и т. д.). Так, гемоглобин животных содержит такую группу с Ре ” , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

Читайте также:  При потере крови падает гемоглобин или нет

    БольшуЕО роль играют хелатные соединения и в природе. Так, гемоглобин состоит из комплекса — гема, связанного с белком — глобином, В геме центральным ионом является ион Fe +, вокруг которого координированы четыре атома азота, принадлежащие к сложному лиганду с циклическими группировками. Гемоглобин обратимо присоединяет кислород и доставляет его из легких по кровеносной системе ко всем тканям. Хлорофилл, участвующий п процессах фотосинтеза в растениях, построен аналогично, но в качестве центрального иона содержит Mg +. [c.588]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Вне организма гемоглобин быстро превращается в метгемогло-б и н, который отличается от оксигемоглобина более прочной связью с кислородом и при расщеплении образует наряду с глобином г е м а-т и н у последнего при атоме железа имеется одна гидроксильная группа. В гемоглобине железо двухвалентно, в метгемоглобине и тематике — трехвалентно. [c.974]

    По химической природе гемоглобин относится к хромопротеидам, точнее, к гемсодержащим хромопротеидам. В состав его молекулы входит простой белок — глобин (96%) и в качестве простети- [c.143]

    Таким образом, глобин предохраняет железо гема от окисления и делает возможным образование оксигенерированного гемоглобина. [c.144]

    В схеме не указаны имеющиеся в молекуле боковые цепи (—СНз, —СН= СН>, —СН2СН2СООН и др.). Само 16-членное кольцо (без Ме) называется скелетом порфирина. В центре порфирина находится комплексообразователь, связанный атомами азота в гемоглобине — ион Ре , в хлорофилле — нон Mg +. Вся структура соединена с белковой частью (глобином, состоящим из четырех полипептидных цепочек), без которой ни гемоглобин, ни хлорофилл не могут осуществлять свои биохимические функции. Гем обусловливает красный цвет крови. Установлено, что у иона Ре-+ шесть координационных мест, из них четыре удерживают его в плоскости кольца, а два перпендикулярны этой плоскости, причем одно из них связывает гем с глобином, а другое—с молекулой кислорода. Гемоглобин обратимо присоединяет кислород и разносит его по кровеносной системе из легких в каждую клетку тела. [c.207]

    Сочетание спе[и фнческого белка глобина и гема обусловливает указанную иа стр, 447 уникальную способность гемоглобина переносить кислород от легких к клеткам тканей, Большинстно хромопротеидов аналогично гемоглобину содержит и свое.м составе ионы металлов (железо или медь). [c.451]

    При осторожном гидролизе соляной кислотой гемоглобин расщепляется на два фрагмента— гемин (4%) и глобин (96%). Следователь-, но, гемоглобин является сложным белком, состоящим из белка — глобина, связанного с простетической irpyininofi (греч. prosthetos—связанный), содержащей железо. [c.671]

    Эритроидные стволовые клетки служат предшественниками содержащих гемоглобин эритроцитов. Вспомним (гл. 4, разд. Д, 7), что гемоглобины млекопитающих состоят из двух а-цепей и еще двух других цепей — либо , либо у, либо б, либо е. Гемоглобин взрослых в основном имеет структуру а2 2, но имеется также небольшое количество гемоглобина 0202. Для эмбриона на ранних стадиях развития характерен гемоглобин 0282, но на последующих стадиях е-цепи замещаются двумя другими, свойственными эмбриональному гемоглобину цепями, а именно °Y и Генетические исследования показали, что гены е-, у-, – и 6-глобина тесно сцеплены [188]. Почему же в отдельном эритроците присутствует гемоглобин только одного типа Видимо, дело в том, что для данного набора генов существует только один промотор. Если после каждого гена имеется сигнал-терминатор, то очевидно, что будет идти транскрипция только того гена, который ближе всех прилегает к промотору. В случае потери на каком-то этапе развития этого гена начнет транскрибироваться следующий ген и т. д. таким образом могут происходить нарастающие постепенные изменения в выражении гена в эритроцитах. Еще одна особенность процесса дифференцировки эритроцитов — это его чувствительность к гормону эритропоэти-ну, гликопротеидному гормону, образующемуся в почках [184—186]. Под действием эритропоэтина в дифференцирующих стволовых клетках начинается интенсивный синтез гемоглобина, и они окончательно превращаются в эритроциты [186а]. [c.364]

    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Чел1у равно наименьшее число нуклеотидов, которые должны быть изменены или неправильно считаны для того, чтобы вместо обычного гемоглобина (НЬА) образовался глобин, характерный для серповидноклеточной анемии (НЬЗ)  [c.495]

    Красный пигмент эритроцитов крови гемоглобин-же-лезосодсржащий комплекс протопорфирина IX (XV R = = R = H= Hj) и белка глобина. В природе встречается ряд аналогов протопорфирина IX иаиб. близки ему по [c.491]

    Состоит из одной полипептидной цепи, содержащей 153 аминокислотных остатка (мол. м. 17 800), к-рая уложена в плотную глобулу размером 4,5 х 2,5 нм. В спец. полости М. ( кармане ) помещается гем, к-рый связан с остальной частью молекулы (глобином), как в гемоглобине. Ок. 75% полипептидной цепи находится в конформации а-спирали (все а-спирали правозакрученные). Между областями спи-рализации находятся 5 неспирализованных участков такие же участки находятся на концах цепи. Внутр. область молекулы состоит гл. обр. из неполярных остатков леЙ1щна, валина, метионина, фенилаланина и не содержит боковых полярных цепей глутаминовой и аспарагиновой к-т, глутамина, аспарагина, лизина и аргинина. На наружной стороне молекулы расположены как полярные, так и неполярные аминокислотные остатки. [c.92]

Биохимия Издание 2 (1962) — [

c.43

]

Источник