Хромопротеиды гемоглобин и миоглобин

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

  Хромопротеины

Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков – участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах.

Гемоглобин. Его белковая часть представлена глобином, небелковая – гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц.

a цепи построены из 141 АК-остатка.

b цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка – гем].

Каждая из субъединиц связана с гемом:

[гем]

Основная функция гемоглобина – транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови).

Различают:

– HbO2
– оксигемоглобин (связан с молекулой O2);

– HbCO – карбоксигемоглобин;

– HbCO2
– карбгемоглобин;

– HbOH – метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород).

Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы:

1) Физиологические гемоглобины;

2) Патологические (аномальные).

К физиологическим гемоглобинам относятся:

– Hb P – примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона;

– Hb F – фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови;

– Hb A, Hb A2, Hb A3 – это гемоглобины взрослого организма. На Hb A приходится около 90-96%.

Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2a и 2b субъединицы, а Hb F – 2a и 2g субъединицы.

К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся:

– HbS – гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении b–цепи глутамин заменен на валин.

Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям).

Гемоглобин – основной дыхательный белок крови, относящийся к хромопротеидам. Он состоит из белковой (глобин) и небелковой (гем) части, является белком четвертичной структуры и состоит из четырех субъединиц, каждая из которых включает в себя полипептидную цепь, соединенную с гемом, полипептидные цепи попарно одинаковы. Так, гемоглобин взрослого типа (НЬ А) имеет 2а- и 2y-полипептидные цепи. Фетальный гемоглобин, преобладающий в крови новорожденного (Hb F), имеет в своем составе 2а- и 2у-полипептидные цепи. У взрослого человека в крови 95-98% приходится на долю гемоглобина А, 1-1,5% составляет Hb F, 2-2,5% – на гемоглобин А2 (а2б2). Гемоглобин находится в эритроцитах в виде нескольких производных. Присоединение кислорода (к железу тема) приводит к образованию оксигемоглобина (НbО2). Отдав кислород тканям, оксигемоглобин превращается в восстановленную форму (НbО2 <-> ННb). Удаление диоксида углерода (углекислого газа) из тканей происходит путем его присоединения к свободным аминным группам глобина и при этом образуется карбаминогемоглобин (карбгемоглобин). Оксид углерода (СО) при соединении с железом гема образует стойкое соединение карбоксигемоглобин. Оксид углерода является продуктом обмена и образуется эндогенно при распаде гема (в норме – при старении эритроцитов). Содержание карбоксигемоглобина, в первую очередь, является показателем гемолиза эритроцитов. Железо гема находится в двухвалентной форме. При окислении его (Fe2+<-> Fe3+) образуется метгемоглобин. Окислителями железа гема могут быть различные продукты метаболизма-активные формы кислорода (АФК), ферменты, альдегиды и др. В норме за сутки образуется 2,5% метгемоглобина, а обнаруживается в крови 1,5%. Метгемоглобинредуктазная система восстанавливает метгемоглобин, переводя его в восстановленную форму, возвращая тем самым способность транспортировать кислород. К экзогенным метгемоглобинообразователям относятся нитриты, нитраты, присутствующие в избыточном количестве в воде, в пище, ряд лекарственных препаратов. Гемоглобин, образуя комплексные соединения с различными сульфопроизводными, образует сульфметгемоглобин. У здоровых людей это производное гемоглобина в крови не содержится. Обнаружение его свидетельствует о повышенном содержании сульфопроизводных в воде, пище, воздухе. В связи с этим сульфгемоглобин является своеобразным маркером экологической обстановки.

Диагностическое значение имеет определение содержания гликозилированных (гликированных) гемоглобинов, образующихся в результате комплексирования гемоглобина с различными углеводородами. 95% от общего количества гликозилированных гемоглобинов приходится на долю гемоглобина A1c, образующегося в результате комплексирования гемоглобина и глюкозы.

Повышение содержания гликозилированных гемоглобинов наблюдается при сахарном диабете.

Определение гликозилированных гемоглобинов производится как для диагностики при массовых обследованиях населения, так и для контроля за соблюдением диеты у больных с сахарным диабетом, при подборе дозы инсулина и контроле за эффективностью лечения.

Содержание гликозилированного гемоглобина (Hb A1c) у здоровых находится в пределах 3-6% от общего гемоглобина или (0,55±0,09) мг фруктозы на 1 мг гемоглобина.

Аномальные гемоглобины
Наличие в эритроцитах людей аномальных или патологических гемоглобинов определяет состояния, обозначаемые как гемоглобинозы, или гемоглобинопатии. Это наследственные аномалии кроветворения, при которых молекулы патологических гемоглобинов имеют измененную структуру, поэтому подобные заболевания относятся к группе так называемых молекулярных болезней. 
В настоящее время установлено более 200 аномальных гемоглобинов: B (S), С, D, Е, G, J, I, К, L, M, N, О, Р, Q и других, а также возможные их комбинации (SC, SD и др.). 
 

Гемоглобин S 
Отличается от гемоглобина А строением четвертого пептида, в котором на шестом месте вместо глутаминовой кислоты находится электрически нейтральный валин. Гемоглобин S мало растворим, нейтрален по заряду, электрофоретически менее подвижен. В капиллярах при отдаче кислорода гемоглобин S выпадает в осадок в форме веретенообразных кристаллоидов (тактоидов), которые растягивают оболочку и ведут к распаду эритроцитов. У гетерозиготов содержание гемоглобина S равняется 20 – 45 %, у гомозиготов – 60 – 90 %. Гетерозиготная форма аномалии протекает бессимптомно или сопровождается легкой гемолитической анемией. У гомозиготных особей уже с первых месяцев жизни развивается тяжелая форма серповидноклеточной анемии. 

Гемоглобин F 
Характерный для крови плода фетальный гемоглобин может быть обнаружен в повышенных количествах в эритроцитах крови недоношенных детей, при коклюше, серповидноклеточной анемии, талассемии, врожденной микроцитарной анемии, пернициозной анемии, острых и хронических лейкозах, миеломной болезни. Наибольшее содержание (до 97 %) наблюдается при большой талассемии. 

Читайте также:  Какой гемоглобин должен быть у ребенка в 8 лет таблица

Гемоглобин С 
Отличается строением четвертого пептида молекулы гемоглобина, в котором на шестом месте вместо глутаминовой кислоты находится лизин. Центр распространения гена С – северная часть Ганы. Частота гетерозиготности по данным одних авторов, до 15 %, по данным других, – 16,5 – 28 %, среди негров США – 1,8 – 3% на Ямайке – 2,7 % (В. П. Эфроимсон). Наличие гена С в гомозиготном состоянии ведет к развитию выраженной спленомегалии, умеренной микроцитарной анемии с наличием эритроцитов мишеневидной формы. При наличии комбинации гемоглобинов С и S анемия оказывается более тяжелой. 

Гемоглобин D 
Обнаружен у 2 % берберов Марокко и у 0,4 % негров США. У гомозиготов наблюдается микроцитоз, слабый анизо- и пойкилоцитоз и мишеневидность эритроцитов. Описано несколько гемоглобинов D (в северо-западной Индии, среди сикхов в Индии, на острове Кипр, в Турции). 

Гемоглобин Е 
Обнаружен у жителей Юго-Восточной Азии: в Кампучии, Таиланде, Бирме, Бенгалии, у веддов Шри-Ланки, в северо-восточной Малайе, у населения Калимантана и Сулавеси. Частота распространения гена С в разных местностях колеблется от 1 – 3 до 13 (Таиланд) – 20 (Бирма) – 28 – 37 % (Кампучия). У гомозиготов ЕЕ наблюдается микроцитоз, компенсированный развитием эритроцитоза (до 7 – 8 x 1012 /л). Отмечены комбинации генов ES и ЕТ, дающие сублетальный эффект. Клинические проявления при других гемоглобинозах выражены слабо, а распространение более ограниченное (гены G, I, J, К, L, M, N, О, Р, Q). 
 

Серповидно-клеточная анемия – это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение – так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии. 

Серповидно-клеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидно-клеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке. 

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Источник

Гемоглобин – состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II). Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении. Нb + О2 → НbО2 – оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм рт. ст.).

В капиллярах тканей, где парциальное давление кислорода низкое (5 мм рт. ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2 – карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.

Сравнение зависимости насыщения от парциального давления кислорода показывает, что при парциальных давлениях кислорода, характерных для тканей, гемоглобин отдает значительные количества кислорода. В гемоглобине происходит перемещение атома железа в плоскость гема с одновременным изменением конформации полипептидной цепи, но так как молекула Нb имеет четвертичную структуру и отдельные цепи связаны между собой, то это позволяет передать изменения конформации на область связи между полипептидными цепями. Это изменяет положение в пространстве всей молекулы и облегчает доступ О2 к остальным гемам молекулы Нb. Одновременно это изменение конформации сопровождается появлением на поверхности групп, которые, диссоциируя, отдают протоны (Н+) в окружающую среду. При понижении парциального давления кислорода события повторяются в обратном направлении: отдача кислорода идет по мере снижения парциального давления, гемоглобин переходит в другое конформационное состояние, при этом из окружающей среды (ткань), где высока концентрация протонов, протоны присоединяются к гемоглобину. Такие изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.

При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.

Различные формы Нb определяются методом спектрального анализа. У взрослого человека молекула НbА (2 α-цепи и 2 β-цепи). Но от целого ряда условий состав цепей гемоглобина может меняться. У плода НbF (фетальный – 2 α-цепи, 2 γ-цепи) – он лучше связывает кислород при его относительной недостаточности в период внутриутробного развития.

В результате определенных нарушений генетического аппарата клетки Нb патологический, а заболевания – гемоглобинопатии наследственного происхождения.

Классическим примером является серповидно-клеточная анемия(аномальный гемоглобин – причина). Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.

Миоглобин – хромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо в составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.

Читайте также:  Химический элемент составе гемоглобина

Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.

Гем –простетическая группа многих важных с точки зрения функций белков.

Гем – небелковая часть, в составе находится Fе (ΙΙ), гем входит в состав флавопротеинов, гемопротеидов, гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов.

Знание вопросов биосинтеза и распада гема призвано помочь в понимании роли гемопротеинов в организме. Нарушение этих процессов связано с развитием заболеваний. Так, с нарушением биосинтеза гема связана группа заболеваний – порфирии.

Порфирии – группа заболеваний с нарушением биосинтеза гемма. группа заболеваний с нарушением биосинтеза гемма. Наблюдается накопление побочных промежуточных продуктов, которые откладываются в различных органах или выделяются в повышенных количествах с калом или мочой. Появление в моче в значительных количествах веществ незавершенного синтеза гемма либо продуктов его распада (копропорфирин и уропорфирин) вызывает порфиринурию. Моча пурпурно-красного цвета. Это бывает при некоторых поражениях печени, кишечных кровотечениях, интоксикациях. Порфиринурия является одним из признаков отравления свинцом, когда нарушается транспорт Fe, необходимого для синтеза гемоглобина.

Гораздо чаще встречаются патологические состояния, связанные с распадом гема и нарушением выведения из организма продуктов его катаболического превращения. Наиболее распространенной является желтуха.

Схема синтеза гема

глицин + сукцинил – КоА
синтаза 5-аминолевулиновой кислоты
5 – аминолевулиновая кислота
 
Уропорфириноген ΙΙΙ В цитоплазме клеток

Копропорфириноген ΙΙΙ

Протопорфирин ΙΧ

В митохондриях + Fe2+

клетки

Гем

Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин. Хромопротеиды растительного и животного происхождения, находящиеся в пищевых продуктах, подвергаются действию ферментов пищеварительного тракта.

Гемоглобин пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Белок расщепляется пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в ЖКТ, которые свойственны простым белкам. Простетическая группа – гемм – окисляется в гематин. Гематин всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в виде различных продуктов, образующихся под влиянием бактерий кишечника. Обычные химические способы обнаружения крови в кале, имеющие большое значение для клиники, основаны на реакциях гематина, и могут дать достоверные результаты только в том случае, если диета не содержит мяса, в котором присутствует миоглобин.

Время жизни эритроцитов у взрослого организма составляет около 4 месяцев. Спустя этот период времени эритроциты разрушаются в основном в печени, селезенке и костном мозге. В ходе разрушения из эритроцитов высвобождается гемоглобин (8 – 9 г в сутки).

Источник

Хромопротеиды (греческий chroma цвет, окраска + протеиды; синоним: хромопротеины) — сложные белки, молекулы которых содержат небелковые простетические хромофорные группы, поглощающие свет определенной длины волны в видимой части спектра и сообщающие всему соединению соответствующую окраску. Хромопротеиды являются важнейшими пигментами (см.), широко распространенными в живой природе и выполняющими в организме самые разнообразные биологической функции: перенос и депонирование кислорода и углекислого газа, участие в тканевом дыхании (см. Окисление биологическое), в окислительно-восстановительных реакциях (см.), фотосинтезе (см.), в механизмах зрения (см.). Генетически обусловленное нарушение обмена некоторых хромопротеидов является причиной тяжелых наследственных болезней (см.), например гемоглобинопатий (см.), заболеваний нервной и мышечной систем, связанных с дефицитом цитохромов (см.), и др.

Рис. Схема классификации хромопротеидов по функциональному признаку.

Рис. Схема классификации хромопротеидов по функциональному признаку.

Классификация хромопротеидов по функциональному признаку приведена на схеме (рис.).

К главным представителям хромо-протеидов принадлежат дыхательные пигменты (см.) — переносчики кислорода, содержащие или не содержащие гем — комплексное соединение протопорфирина с железом (см. Гемоглобин). Гемопротеиды или выполняющие аналогичные функции протеиды, содержащие медь, гемоцианины, обнаружены во всех организмах за исключением анаэробных клостридий и молочно-кислых бактерий. При высоком парциальном давлении кислорода гемопротеиды обратимо связывают его и отдают по мере снижения парциального давления кислорода. Для них характерен одинаковый тип укладки полипептидной цепи вокруг близких по структуре простетических групп, содержащих ион металла, и отсутствие изменения валентности иона металла при присоединении кислорода. В оксидазных системах, гидроксилазах и оксигеназах, участвующих в терминальном окислении, гемопротеиды активируют кислород за счет окисления железа, содержащегося в геме, облегчая тем самым взаимодействие кислорода с водородом субстратов дыхания. Существуют другие хромопротеиды, содержащие железо (см.) не в составе гема; они также осуществляют функции транспорта и депонирования веществ, связываемых железом. К таким хромопротеидам относятся трансферрин, концентрация которого в крови достигает 2 г/л, красно-коричневый водорастворимый хромопротеид ферритин (см.), гемосидерин, состоящий из нескольких молекул ферритина, лактоферрин — красный железосвязывающий белок молока и кональбумин — белок куриных яиц, подобный трансферрину.

Окраска хромопротеидов желтого цвета — флавопротеидов (см.), их восстановление и окисление обусловлены наличием в молекуле этих хромопротеидов в качестве хромофора изоаллоксазинового кольца (изоаллоксазила) рибофлавина (см.). Окисленные формы дыхательных ферментов (см.), относящихся к хромопротеидам, имеют красную, коричневую или зеленую окраску, а большинство хромопротеидов, содержащих медь (см.), окрашено в ярко-голубой цвет. Окраска хромопротеидов усиливается при образовании комплексных соединений с белком за счет координации с одним или несколькими атомами серы полипептидной цепи метионина (см.). Медьсодержащие белки, благодаря способности меди подвергаться обратимому окислению — восстановлению,— участвуют в некоторых окислительно-восстановительных реакциях как одноэлектронные переносчики. К таким белкам относятся стеллацианин — гликозаминопротеогликан из японского лакового дерева, пластоцианин зеленых растений, входящий в систему фотосинтеза, азурины — низкомолекулярные бактериальные переносчики электронов. Большая часть медьсодержащих ферментов катализирует окисление органических субстратов кислородом с образованием перекиси водорода (см.); к ним относятся галактозооксидаза (КФ 1.1.3.9), темно-зеленый оттенок этого фермента связан с присутствием в фермент-субстратном комплексе галактозы и кислорода, тирозиназа (КФ 4.1.99.2), участвующая в синтезе диоксифенилаланина (см.) и образовании меланинов (см.).

Читайте также:  Пентаксим при низком гемоглобине

Из сока японского лакового дерева и гриба Polyporus выделен фермент лакказа (полифенолоксидаза; КФ 1.14.18.1). Продуктом реакции, катализируемой этим ферментом, является вода. Фермент не чувствителен к оксиду углерода СО и содержит три типа ионов меди. Ионы меди одного типа имеют голубой цвет, они связывают кислород, ионы другого типа (неокрашенные) участвуют в связывании анионов, стабилизируя тем самым образующуюся на промежуточной стадии ферментативной реакции перекись водорода. Третий тип ионов меди, содержащихся в лакказе, образует двухэлектронный акцептор, передающий электроны на кислород с промежуточным образованием перекиси водорода.

Регуляция содержания меди в организме человека и животных осуществляется церулоплазмином (см. Кровь), который по ферментативным свойствам напоминает лакказу и может участвовать в окислении двухвалентного железа на этапе его присоединения к трансферрину. Группа хромопротеидов, называемых супероксиддисмутазами, предотвращает превращение супероксидного анион-радикала в цитотоксический гидроксильный радикал (см. Радикалы свободные). Помимо атома меди в молекуле супероксиддисмутазы (пероксид-дисмутазы; КФ 1.15.1.1) может присутствовать цинк (см.), марганец (см.) или железо. В клетках кишечной палочки обнаружена железосодержащая супероксиддисмутаза; марганецсодержащие ферменты найдены в митохондриях млекопитающих и у некоторых бактерий.

Свойствами фотосенсибилизаторов обладают хромопротеиды родопсин (см.), хлорофиллы (см.), бактериохлорофилл, каротиноиды (см.) и синие или красные фикобилины. Каротиноиды и фикобилины, так же как и хлорофиллы, являются рецепторами энергии светового излучения, однако они используют ту часть видимого спектра, которую не поглощают хлорофиллы; эти хромопротеиды не содержат металла и окраска их обусловлена наличием полиненасыщенного углеродного скелета. Каротиноиды защищают хлорофиллы от распада в присутствии молекулярного кислорода. В противоположность хлорофиллам фикобилины не содержат магния, их простетическая группа представлена тетрапирролом с открытой цепью, они легко образуют сложные комплексы с белками — фикоэритрин и фикоцианин. Эти комплексы входят в систему фотосинтеза красных и сине-зеленых водорослей. Наличие фикобилинов в хроматофорах водорослей (наряду с хлорофиллом) рассматривают как приспособление, с помощью которого достигается лучшее обеспечение энергией светового излучения тех видов водорослей, которые существуют в условиях недостаточного освещения. К хромопротеидам можно отнести также меланопротеиды, красящие вещества кожи, волос и шерсти (в их состав входят меланины) и буро-зеленый пигмент панциря ракообразных, из которого при нагревании образуется красный каротиноид астацин.

В организме человека и животных гемсодержащие хромопротеиды участвуют во всех этапах утилизации кислорода, начиная от его транспорта — гемоглобин, миоглобин (см.) — и кончая терминальным окислением в митохондриях — цитохромы, цитохромоксидаза (см. Цитохромы).

Биохимический полиморфизм гемоглобина, выражающийся наличием в эритроцитах аномальных гемоглобинов, клинически проявляется гемоглобинопатиями (см.), протекающими чаще всего с гемолитической анемией (см.). К гемоглобинопатиям относят и случаи скрытого носительства аномальных гемоглобинов или генов талассемии (см.). Определение содержания миоглобина в крови и моче используется в качестве дополнительного диагностического теста при диагностике некоторых заболеваний сердца, сосудов и скелетных мышц, сопровождающихся нарушением обмена этого хромопротеида, в результате чего развивается миоглобинурия (см.). Активность цитохромоксидазы, фермента, чувствительного к действию цианистых соединений и оксида углерода, в сыворотке крови служит критерием тяжести отравления этими веществами (см. Отравления). Гемсодержащие ферменты каталаза (см.) и пероксида за (см. Пероксидазы) участвуют в разложении токсичных для организма перекиси водорода и гидроперекисей, образующихся в результате ряда ферментативных реакций и оказывающих повреждающее действие на клеточные компоненты. Предполагают, что при наследственной акаталазии (см.) происходит усиление окисления гемоглобина крови до метгемоглобина и изменение кислородтранспортной функции крови.

Функционирование цепи микросомного гидроксилирования стероидов (см.), жирных кислот (см.), ароматических соединений (см. Органические соединения) и лекарственных веществ сопряжено с действием цитохромов b5 и P-450, а также флавопротеидов, ускоряющих восстановление переносчика окислительно-восстановительных эквивалентов за счет НАД(Ф)-Н. В роли такого переносчика могут выступать белки типа ферродоксина, содержащие железо не в составе тема, например, адренодоксин из коры надпочечников.

При алиментарной недостаточности железа или после массивной кровопотери наблюдается снижение концентрации гемоглобина и других гемсодержащих хромопротеидов. Перенос железа в ткани регулируется содержанием трансферрина в сыворотке крови. Избыточное количество железа при низком содержании соответствующего транспортного белка приводит к отложению железа в тканях в виде метаболически неактивного гемосидерина (см. Гемосидероз).

Церулоплазмин (КФ 1.16.3.1) — медьсодержащая оксидаза, катализируя окисление полифенолов, полиаминов, аскорбиновой кислоты, в то же время принимает участие в транспорте меди. При недостаточности церулоплазмина медь может накапливаться в тканях, что наблюдают при гепатоцеребральной дистрофии (см.). Основным диагностическим признаком этого заболевания является низкая активность церулоплазмина в сыворотке крови. При снижении содержания в сыворотке крови альбумина и неконъюгированного (непрямого) билирубина она принимает голубой оттенок, обусловленный присутствием церулоплазмина. Алиментарная недостаточность меди вызывает снижение активности другого медьсодержащего фермента — супероксиддисмутазы. Это увеличивает чувствительность животного организма к повреждающему действию активных форм кислорода, а также УФ- и ионизирующего излучения.

При генетически обусловленном снижении активности глутатион-редуктазы (КФ 1.6.4.2), предотвращающей окислительный катаболизм гемоглобина путем восстановления глутатиона (см.), также снижается резистентность организма к повышенным концентрациям кислорода.

Недостаточная активность тирозиназы или блокирование ее активности в меланоцитах вызывает депигментацию кожи (см. Альбинизм).

Библиогр.: Верболович П. А. и Утешев А. Б., Железо в животном организме, Алма-Ата, 1967; Вилкинсон Д. Принципы и методы диагностической энзимологии, пер. с англ., М., 1981; Диксон М. и Уэбб Э. Ферменты, пер. с англ., т. 1—3, М., 1982; Мецлер Д. Биохимия, пер. с англ., т. 1—3, М., 1980; McGilvery R. W. Biochemistry, Philadelphia, 1970.

Источник