Эритроциты состоят из гемоглобина и кислорода

Эритроциты состоят из гемоглобина и кислорода thumbnail

Эритроци́ты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), также известные под названием кра́сные кровяны́е тельца́ — клетки крови позвоночных животных (включая человека) и гемолимфы некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома[1], и некоторых двустворчатых моллюсков[2]). Они насыщаются кислородом в лёгких или в жабрах и затем разносят его (кислород) по телу животного.

Цитоплазма эритроцитов богата гемоглобином — пигментом красного цвета, содержащим двухвалентный атом железа, который способен связывать кислород и придаёт эритроцитам красный цвет.

Человеческие эритроциты — очень маленькие эластичные клетки дисковидной двояковогнутой формы диаметром от 7 до 10 мкм. Размер и эластичность помогают им при движении по капиллярам, их форма обеспечивает большую площадь поверхности, что облегчает газообмен. В них отсутствует клеточное ядро и большинство органелл, что повышает содержание гемоглобина. Около 2,4 миллиона новых эритроцитов образуется в костном мозге каждую секунду[3]. Они циркулируют в крови около 100—120 дней и затем поглощаются макрофагами. Приблизительно четверть всех клеток в теле человека — эритроциты[4].

Функции[править | править код]

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2—3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем — комплекс протопорфирина IX с ионом 2-валентного железа, кислород обратимо координируется с ионом Fe2+ гемоглобина, образуя оксигемоглобин HbO2:

Hb + O2 HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы 1[en], содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H2O + CO2 H+ + HCO3-

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионные каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорид-аниона (хлоридный сдвиг).

Формирование эритроцитов[править | править код]

Формирование эритроцитов (эритропоэз) происходит в красном костном мозге тазовых костей, черепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни эритроцита — 3—4 месяца, разрушение (гемолиз) происходит в печени и селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (БОЕ-Э), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (КОЕ-Э).

Колониеобразующая единица эритроцитов (КОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: диаметр 20—25 мкм, крупное (более 2/3 всей клетки) ядро с 1—4 чётко оформленными ядрышками, ярко-базофильная цитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для эритробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: диаметр 10—20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • Базофильный нормоцит. Отличительные признаки: диаметр 10—18 мкм, лишённое нуклеол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базохроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормоцит. Отличительные признаки: диаметр 9—12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормоцит. Отличительные признаки: диаметр 7—10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: диаметр 9—11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулум. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с диаметром 7—8 мкм, не имеющий ядра и ДНК (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита. Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях. Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки.

Читайте также:  Строение гемоглобина и его функции

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность к реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Гемопоэз (в данном случае эритропоэз) исследуется по методу селезёночных колоний, разработанному Э. Маккаллохом[en] и Дж. Тиллом[en].

Структура и состав[править | править код]

Размеры и форма эритроцитов широко варьируют среди позвоночных. Лишённые ядра эритроциты млекопитающих имеют наименьшие размеры. Почти столь же малы имеющие ядро эритроциты птиц. У остальных групп позвоночных они заметно крупнее.

Зрелые эритроциты птиц имеют ядро, однако в крови взрослых самок папуанского пингвина с очень низкой частотой встречаются и безъядерные красные кровяные тельца (B).

У большинства групп позвоночных эритроциты имеют ядро и другие органеллы.

У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства органелл. Ядра выбрасываются из клеток-предшественников в ходе эритропоэза. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин. У некоторых животных (например, верблюдов) эритроциты имеют овальную форму.

Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Эритроциты (красные кровяные тельца) человека

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Мембрану пронизывают трансмембранные белки — гликофорины, которые благодаря большому количеству остатков N-ацетилнейраминовой (сиаловой) кислоты ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеиновой природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус-фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы — 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре). У человека диаметр эритроцита составляет 6,2 — 8,2 мкм[5], толщина — 2 мкм, объём — 76—110 мкм³[6].

Содержание эритроцитов в крови:[источник не указан 1637 дней]

  • у мужчин — 3,9 — 5,5⋅1012 на литр (3,9—5,5 млн в 1 мм³),
  • у женщин — 3,9 — 4,7⋅1012 на литр (3,9—4,7 млн в 1 мм³),
  • у новорождённых — до 6,0⋅1012 на литр (до 6 млн в 1 мм³),
  • у пожилых людей — 4,0⋅1012 на литр (менее 4 млн в 1 мм³).

Переливание крови[править | править код]

При переливании крови от донора к реципиенту возможна агглютинация (склеивание) эритроцитов, а также гемолиз (их разрушение). Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером в 1900 году. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита, — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). В системе AB0, сформулированной Яном Янским в 1907 году, выделяются 4 группы крови, для каждой из которых характерны различные антигены и антитела. Переливание обычно проводится лишь между обладателями одной группы крови.

I — 0II — AIII — BIV — AB
αββα

Место в организме[править | править код]

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 см/мин, что даёт им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне. У человека в 1 мм³ крови содержится 3,9—5,5 млн эритроцитов, у некоторых копытных — значительно больше (у лам — 15,4 млн, у коз — 13 млн), у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс. Общее число эритроцитов снижается при анемиях, повышается при истинной полицитемии.

Средняя продолжительность жизни эритроцита человека — 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается), у собак — 107 дней, у домашних кроликов и кошек — 68.

Патология[править | править код]

Эритроциты человека:

  1. нормальные — двояковогнутые;
  2. нормальные, вид с ребра;
  3. в гипотоническом растворе, разбухшие (сфероциты);
  4. в гипертоническом растворе, съёжившиеся (эхиноциты)

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную, сферическую или мишеневидную форму.

Изменение формы эритроцитов называется пойкилоцитозом[en]. Сфероцитоз (сферическая форма эритроцитов) наблюдается при некоторых формах наследственной анемии. Эллиптоциты (эритроциты овальной формы) встречаются при мегалобластной и железодефицитной анемии, талассемиях и других заболеваниях. Акантоциты и эхиноциты (эритроциты шиповатой формы) встречаются при поражениях печени, наследственных дефектах пируваткиназы и др. Мишеневидные эритроциты (кодоциты) — это клетки с бледной тонкой периферией и центральным утолщением, содержащем скопление гемоглобина. Встречаются при талассемиях и других гемоглобинопатиях, интоксикации свинцом и др. Серповидные эритроциты — признак серповидноклеточной анемии. Встречаются и другие формы эритроцитов[7].

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Среднее содержание гемоглобина для мужчин — 13,3—18 г% (или 4,0—5,0⋅1012 единиц), для женщин — 11,7—15,8 г% (или 3,9—4,7⋅1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Примечания[править | править код]

  1. ↑ Вестхайде В., Ригер Р. (ред.) Зоология беспозвоночных (в двух томах). Том 1: от простейших до моллюсков и артропод. М., КМК, 2008
  2. Ansell, A. D.; N. Balakrishnan Nair. Occurrence of Haemocoelic Erythrocytes containing Haemoglobin in a Wood Boring Mollusc (англ.) // Nature : journal. — 1968. — Vol. 217, no. 5126. — P. 357—357. — doi:10.1038/217357a0.
  3. Erich Sackmann. Biological Membranes Architecture and Function: Handbook of Biological Physics / ed. R. Lipowsky and E. Sackmann. — Elsevier, 1995. — Т. 1.
  4. Pierigè F., Serafini S., Rossi L., Magnani M. Cell-based drug delivery (англ.) // Advanced Drug Delivery Reviews (англ.)русск. : journal. — 2008. — January (vol. 60, no. 2). — P. 286—295. — doi:10.1016/j.addr.2007.08.029. — PMID 17997501.
  5. Mary Louise Turgeon. Clinical Hematology: Theory and Procedures (англ.). — Lippincott Williams & Wilkins (англ.)русск., 2004. — P. 100.
  6. McLaren C. E., Brittenham G. M., Hasselblad V. Statistical and graphical evaluation of erythrocyte volume distributions (англ.) // American Physiological Society (англ.)русск. : journal. — 1987. — April (vol. 252, no. 4 Pt 2). — P. H857—66. — PMID 3565597.
  7. ↑ Пойкилоцитоз
Читайте также:  Низкий гемоглобин делали переливание крови

Литература[править | править код]

  • Афансьев Ю. И. Гистология, цитология и эмбриология / Е. А. Шубикова. — 5-е издание. — М.: «Медицина», 2002. — 744 с. — ISBN 5-225-04523-5.
  • Глушен С. В. Цитология и гистология. Курс лекций. — Мн., 2003.

Ссылки[править | править код]

  • Физиология человека: Функции клеток крови. Эритроциты.
  • [dic.academic.ru/dic.nsf/medic2/30931 Нормоциты]
  • Кроветворение
  • Гемопоэз
  • Красные кровяные тельца // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • dic.academic.ru/dic.nsf/medic2/30931

Источник

Эритроциты состоят из гемоглобина и кислорода

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Эритроциты – красные кровяные тельца. Именно благодаря этим клеткам наша кровь имеет такой насыщенный красный цвет. Оттенки крови так же зависят от состояния эритроцитов. Темная, венозная кровь является результатом снижения концентрации кислорода, алая кровь говорит о том, что эритроциты обогащены кислородом и вновь способны его нести каждой клетке нашего организма. Наверняка интересно узнать, как на молекулярном уровне происходит процесс переноса кислорода. Потому начнем предметно обсуждать основную функцию эритроцитов – перенос кислорода органам и тканям.

Несколько интересных фактов об эритроцитах

  • В одном кубическом миллилитре крови в среднем содержится 4,5 миллионов эритроцитов.
  • Площадь поверхности всех красных кровяных телец равна 3000 квадратным метрам.
  • Эритроциты, это не многие из самостоятельных клеточных структур организма, которые лишены ядра.
  • Длительность жизни каждого эритроцита составляет в среднем 120 дней.
  • Цвет эритроцита меняется под воздействием кислорода. При присоединении молекул кислорода к гемоглобину цвет эритроцита приобретает алый оттенок, при отсутствии или снижении количества присоединенного к гемоглобину кислорода цвет приобретает бордовый оттенок.

Каково строение эритроцита?

Эритроциты состоят из гемоглобина и кислородаЭритроцит имеет форму двояковогнутого диска. Эту форму при созревании эритроцит принимает неспроста. Так максимально увеличивается площадь поверхности клетки, повышается ее пластичность при прохождении мельчайших сосудов. Именно эти свойства максимально повышают эффективность газового транспорта эритроцитов. Однако при повреждениях и некоторых генетических заболеваниях эритроциты могут приобретать иную форму – шаровидную, серповидную, овальную.

Стенка эритроцита представлена липидной мембраной, содержащей в толще пронизывающие ее белковые молекулы.

Мембрана обладает рядом очень важных функций:

  • Обладает избирательной проницаемостью для электролитов, жидкости, газов, органических веществ.
  • На поверхности мембраны имеются структуры, к которым прикрепляются антитела для дальнейшего курирования по кровеносной системе.
  • В составе мембраны имеются специальные белковые структуры, которые обеспечивают электролитный баланс – избавляя клетку от излишнего натрия и повышая внутриклеточную концентрацию калия и хлора.
  • Высокая пропускная способность для молекул кислорода, углекислого газа и угольной кислоты способствует осуществлению основной функции эритроцита – газообмену.
  • Благодаря различиям в концентрации электролитов внутри и вне клетки эритроцита, создается поляризация клеточной мембраны, что препятствует склеиванию эритроцитов между собой и способствует отталкиванию клетки от внутренней стенки сосуда.

В процессе созревания в красном костном мозге предшественники эритроцитов проходят несколько этапов, в результате эритроцит утрачивает ядро и практически все внутриклеточные структуры: митохондрии, аппарат Гольджи, рибосомы и т.д.
Зато большая часть внутреннего пространства эритроцита заполняется гемоглобином. Эта сложная белковая структура обеспечивает основную функцию – присоединение кислорода при прохождении эритроцитом легочной ткани, удерживание кислорода при транспортировке по кровеносному руслу и отдачу кислорода в тканях организма.

Внутреннее пространство эритроцита заполнено так называемой цитоплазмой (жидкостной частью клети). В цитоплазме растворены электролиты (Na,K, Ca,Cl,Mg), имеются в большом количестве белковые молекулы, обеспечивающие некоторые химические реакции, ферменты, раствореные органические вещества. Внутренняя часть эритроцита обладает прочным каркасом, который придает клетке характерную геометрическую форму.

Подробнее о гемоглобине

Эритроциты состоят из гемоглобина и кислородаГемоглобин – этот термин мы часто слышим, когда забираем результаты анализа крови, когда проводится плановая диагностика протекания беременности или при проведении планового обследования или лечения в стационаре.
Почему этот показатель интересует врачей?
Дело в том, что единственная структура, которая может обеспечить наш организм в достаточном количестве кислородом – это гемоглобин. К сожалению, в крови в свободном состоянии кислород растворяется в ничтожно малых количествах 0,03% от общей кислородной емкости крови. Потому при условии отсутствия гемоглобина наша жизнь невозможна.

Гемоглобин имеет достаточно сложную стриктуру условно его можно представить как конструкцию, собранную воедино из трех видов деталей – 4 молекулы Гема, две альфа цепи глобина и две бета-цепи глобина. Подробнее об этих структурах:

Читайте также:  Какие продукты употреблять при повышенном гемоглобине

Эритроциты состоят из гемоглобина и кислородаГем – это сложное органическое соединение, включающее в сою структуру атом железа двухвалентного соединенного с циклическими органическими соединениями.

Эритроциты состоят из гемоглобина и кислородаГлобин – это белковая молекула, образованная посредством объединения 4 белковых цепочек (две альфа цепи и две бета). Данные аминокислотные цепочки отличаются последовательностью аминокислот и их количеством (альфа цепочка состоят из 141 аминокислоты, бета-цепь – из 146).

Структура и состав аминокислотных цепочек определяют их пространственную структуру и биохимические свойства.
Каждая аминокислотная цепь глобина (альфа и бета) соединяется в процессе формирования гемоглобина с молекулой гема. Гемоглобин формируется благодаря слиянию двух альфа цепей (с присоединенными двумя молекулами гемма) и двух бета-цепей (с присоединенными молекулами гема).

Эритроциты состоят из гемоглобина и кислородаИтак, молекула гемоглобина состоит из четырех цепочек аминокислот составляющих глобин с присоединенными (по одной к каждой цепочке глобина) четырьмя молекулами гемма.
Строение гемоглобина достаточно сложное, потому синтез отдельных его частей (цепочки глобина, гем) происходит по отдельности, затем происходит сборка отдельных частей в единое целое.

В производстве гемоглобина не бывает мелочей. К примеру – ошибка в одну аминокислоту – если шестая аминокислота в бета-цепочке глобина будет заменена – (глутаминовая кислота заменит валин) это приведет к такому врожденному заболеванию как серповидно клеточная анемия. А наличие в составе гемоглобина не двухвалентного, а трехвалентного железа лишает данную структуру возможности присоединения кислорода.

Как происходит передача кислорода?

Эритроциты состоят из гемоглобина и кислородаЭритроциты состоят из гемоглобина и кислородаПрисоединение кислорода к гемоглобину
Каждая молекула гемоглобина содержит 4 молекулы гема. Каждая молекула гема в состоянии присоединить по одной молекуле кислорода.
Важное значение в этом процессе имеет такие понятия как концентрация кислорода в воздухе легкого и в крови. Чем выше разница в данных концентрациях, тем легче гемоглобин присоединяет кислород.

Так же немаловажным является то, какой по счету атом кислорода присоединяется к молекуле гемоглобина. Как мы знаем, молекула гемоглобина содержит 4 гема, к каждому из которых может быть присоединено по одной молекуле кислорода. Так вот, наибольшие сложности при присоединении к молекуле гемоглобина испытывает первая молекула кислорода, последующие присоединения происходят гораздо легче. Это связано с тем, что присоединение каждой следующей молекулы кислорода сопровождается пространственными изменениями самой молекулы гемоглобина. Это обстоятельство отражается на скорости кислородного насыщения при прохождении кровью микроциркуляторного русла ткани легкого.

Воздухоносные пути легкого оканчиваются так называемыми альвеолами представляющими вид заполненных воздухом тонкостенных мешочков. Альвеолы окутываются разветвленной сетью капилляров. Благодаря многочисленности капилляров, в разы увеличивается емкость кровеносного русла, что значительно снижает скорость прохождения эритроцитами легочной ткани. Стенки альвеол одноклеточны и достаточно тонкие, что не создает препятствий для проникновения кислорода в капилляры. Немаловажным является диаметр капилляра – он таков, что эритроциты в очереди по одному с трудом пробираются сквозь него.
В общем, легочную ткань можно сравнить с конвейером по обогащению эритроцитов кислородом.

Отдача гемоглобином кислорода
Эритроциты состоят из гемоглобина и кислородаЭритроциты состоят из гемоглобина и кислородаПо достижению микроциркуляторного русла тканей организма происходит обратный эффект – отдача кислорода тканям для восполнения их дыхательных потребностей. Основная причина, по которой происходит отдача кислорода в тканях и органах, является разность в концентрациях кислорода непосредственно в самом эритроците и в тканях. Повинуясь законам физики, кислород покидает молекулу гемоглобина, эритроцит и проникает сквозь стенку капилляра в клетки организма. Далее молекула кислорода вовлекается во внутриклеточный процесс аэробного дыхания – в митохондриях используется для расщепления органических веществ с целью получения энергии, необходимой для работы клетки.

Эритроцит и углекислый газ
Эритроциты состоят из гемоглобина и кислородаВ процессе расщепления органических веществ внутри клетки образуются основные продукты – углекислый газ и вода. Понятно, что вода в организме лишней не бывает, и она может выводиться из организма в составе жидкой части крови или лимфы.

А вот что происходит с огромным количеством углекислого газа?
Естественно, что в виде газа циркулировать по организму данное вещество не может, хотя его растворимость в крови достаточно высока. Частично углекислый газ присоединяется к гемоглобину. В такой форме транспортируется порядка 15% всего образуемого углекислого газа организма. Остальная часть углекислого газа подвергается химической реакции превращения углекислого газа в угольную кислоту.

Внутри эритроцита содержится очень важный фермент – карбоангидраза. При помощи данного фермента происходит химическая реакция: углекислый газ объединяется с молекулой воды, в результате этой нехитрой реакции образуется угольная кислота, которая распадаясь на ион водорода и бикарбонат ион, легко растворяется в воде и может в составе плазмы крови транспортироваться к легким.

По достижению эритроцитом легочной ткани (на уровне микроциркуляторного русла) с угольной кислотой происходит обратный процесс – ее распад на воду и углекислый газ. Эта реакция опять осуществляется посредством фермента карбоангидразы. Вода остается в организме, а углекислый газ охотно, повинуясь законам физики, покидает кровь и переходит в газообразное состояние. После углекислый газ с каждым выдохом выводится во внешнюю среду.

Аналогично обстоят дела и с двуокисью углерода присоединенной к гемоглобину – она отсоединяется и покидает кровеносное русло.
На самом деле в организме при дыхании происходят куда более сложные процессы, нежели представленные в данной статье. Вся представленная информация является лишь «верхушкой айсберга». Но и этот уровень изучения данного процесса приводит в восторг от того насколько тонок и изящно настроен такой сложный процесс газообмена в нашем организме.

Имеются противопоказания. Перед применением необходимо проконсультироваться со специалистом.

По всем вопросам, связанным с функционированием сайта, Вы можете связаться по E-mail: Адрес электронной почты Редакции: abc@tiensmed.ru или по телефону: +7 (495) 665-82-37

Источник