Как найти молекулярную массу гемоглобина
Как вычислить относительную молекулярную массу гемоглобина
Задачи по теме «Белки»
Необходимые пояснения:
- средняя молекулярная масса одного аминокислотного остатка принимается за 120
- вычисление молекулярной массы белков:
а
в — процентное содержание компонента
Задача №1 . Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.
Решение:
Мmin = 56 : 0,34% · 100% = 16471
Задача №2. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.
Решение:
68400 : 120 = 570 (аминокислот в молекуле альбумина)
Задача №3. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?
Решение:
- Мmin = 75,1 : 0,5% · 100% = 15020
- 15020 : 120 = 125 (аминокислот в этом белке)
Задачи по теме «Нуклеиновые кислоты»
Необходимые пояснения:
- относительная молекулярная масса одного нуклеотида принимается за 345
- расстояние между нуклеотидами в цепи молекулы ДНК (=длина одного нуклеотида)- 0, 34 нм
- Правила Чаргаффа:
- ∑(А) = ∑(Т)
- ∑(Г) = ∑(Ц)
- ∑(А+Г) = ∑(Т+Ц)
Задача №4. На фрагменте одной нити ДНК нуклеотиды расположены в последовательности:
Определите процентное содержание всех нуклеотидов в этом гене и его длину.
Решение:
- достраиваем вторую нить (по принципу комплементарности)
- ∑(А +Т+Ц+Г)= 24,
из них ∑(А) = 8 = ∑(Т)
отсюда: х = 16,6%
- молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:
12 · 0,34 = 4,08 нм
Задача№5. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.
Решение:
- Ц – 18% => Г – 18%
- На долю А+Т приходится 100% — (18% +18%)=64%, т.е. по 32%
Ответ: Г и Ц – по 18%,
Задача №6. В молекуле ДНК обнаружено 880 гуаниловых
нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК.
Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?
Решение:
На долю других нуклеотидов приходится 100% — (22%+22%)= 56%, т.е. по 28%
Для вычисления количества этих нуклеотидов
составляем пропорцию 22% — 880
2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:
(880 + 880 + 1120 + 1120) : 2 = 2000
2000 · 0,34 = 680 (нм)
Задача№7. Дана молекула ДНК с относительной молекулярной массой 69000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.
Решение:
- 69000 : 345 = 200 (нуклеотидов в ДНК)
8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК)
∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75.
2) 200 нуклеотидов в двух цепях => в одной – 100.
Задачи по теме «Код ДНК»
Задача №8. Что тяжелее: белок или его ген?
Решение:
тогда масса этого белка – 120х,
количество нуклеотидов в гене, кодирующем этот
источник
Алгоритм решения задач по молекулярной биологии
АЛГОРИТМ ФОРМИРОВАНИЯ УМЕНИЙ
ИСПОЛЬЗОВАТЬ ЗНАНИЯ ПРИ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ ПО МОЛЕКУЛЯРНОЙ БИОЛОГИИ
Одним из важных задач школьного курса «Биология» является формирование у учащихся общеучебных и специальных умений. Умение решать задачи — один из объективных критериев оценки глубины усвоения материала.
Практическое применение полученных знаний при решении задач способствует развитию логического мышления, творческой, аналитическом подходе к решению поставленного вопроса или проблемы в целом, что особенно важно для будущих работников современных отраслей производства, сельского хозяйства, медицины.
Представленный материал предназначен для учителей биологии, старшеклассников, абитуриентов.
В биологии используются основные и производные единицы международной системы единиц : длины, массы, энергии, работы, теплоты и т.д..
Единицы длины — метр (м).1 м = 10 дм = 100 см = мк = нм, 1 нм = м.
Единицы массы — килограмма (кг).1 кг = г (г); 1 г = нг (нанограммов);
1 Дальтон — единица молекулярной массы, равной массе атома водорода.
Единица энергии, работы и количества теплоты — джоуль (Дж).
1 Дж = эрг = 0,2388 кал; 1 кал = 4,1868 Дж.
В процессе решения любой задачи выделяют определенные этапы.
Анализ задачи. Внимательно прочитайте содержание задачи, осмыслите ее и определите:
к какому разделу или теме относится задача,
найдите, что дано и что необходимо найти.
1. Сокращенная запись условия.
С помощью условных обозначений коротко запищит, что дано и что нужно найти (как на уроках химии или физики).
Подумайте, какие из постоянных известных вам величин можно использовать при решении задачи, запишите их.
2. Оформление записи задачи.
Место, что осталось после короткого записи условия задачи, условно разделите на две части. В левой части запишите данные, которые вы будете использовать, в правой — решение. Действий в задаче может быть несколько. Записывайте их так: 1) . ; 2) . ; 3) . и т.д.
На каждом этапе кратко сформулируйте вопрос.
Тщательно проверяйте результаты расчетов.
Проверьте всю ли информацию из условия задачи использовали.
При необходимости выберите другой способ решения.
Проверьте правильность решения в целом, сформулируйте и запишите окончательный ответ.
Примеры решения задач на молекулярные основы НАСЛЕДСТВЕННОСТИ
При решении таких задач необходимо помнить, что:
• длина одного нуклеотида, или расстояние между двумя соседними вдоль оси ДНК, составляет 0,34 нм;
• средняя молекулярная масса одного нуклеотида 345 условных единиц;
• средняя молекулярная масса одной аминокислоты равна 100 условных единиц;
• молекула белка в среднем состоит из 200 аминокислот;
• каждую аминокислоту в белковой молекуле кодирует триплет нуклеотидов и-РНК (во время трансляции);
• для определения длины гена (l) учитывают количество нуклеотидов, которая содержится в одной цепи ДНК;
• для определения молекулярной массы гена (Mr) учитывают количество нуклеотидов, содержится в двух цепях ДНК;
• трансляция осуществляется согласно генетическим кодом;
• для всех ДНК выполняется правило Чаргаффа: А = Т; Г = Ц;
• А + Г = Т + Ц (содержание пуриновых азотистых оснований — аденина и гуанина — равна содержания пиримидиновых азотистых оснований — тимина и цитозина);
• сумма всех нуклеотидов в молекуле ДНК или РНК (А + Т + Г + Ц или А + В + Г + Ц) составляет 100%.
На фрагменте одной цепи ДНК нуклеотиды расположены в последовательности, показанной ниже.
1. Нарисуйте схему структуры двухцепочечной молекулы ДНК.
2. Какова длина в нанометрах этого фрагмента?
3. Какова масса двухцепной фрагмента?
1. Руководствуясь свойством ДНК, способностью к самовоспроизведению (репликации), в основе которого лежит комплиментарность, запишем схему двухцепочечной ДНК:
А Г Т -А Ц Г -Г Ц А -Т Г Ц -А Г Ц-
Т Ц А — Т Г Ц — Ц Г Т — А Ц Д — Т Ц Г —
2. Длина одного нуклеотида, или расстояние между двумя соседними вдоль оси ДНК, составляет 0,34 нм. Длина двухцепочечной фрагмента равна длине одной цепи.
L = 15 х 0,34 = 5,1 (нм) (15 — количество нуклеотидов в одной цепи).
3. Средняя молекулярная масса одного нуклеотида 345 условных единиц, молекулярная масса фрагмента ДНК:
Мr = 345 х 15 = 5175 (а.о.м) (30 — количество нуклеотидов в двух цепях).
Ответ. Вторая цепь фрагмента ДНК имеет следующую структуру: ТЦА — ТГЦ — ЦГТ — АЦГ — ТЦГ; длина фрагмента ДНК — 5,1 нм; молекулярная масса фрагмента ДНК — 5175 а.е.м.
Фрагмент первой цепи ДНК имеет такую нуклеотидную последовательность: ТАЦАГАТГГАГТЦГЦ. Определите последовательность мономеров белка, закодированного фрагментом второй цепи ДНК.
ДНК: — ТАЦ — АГА — ТГГ — АГТ — ЦГЦ-
иРНК: — УАЦ — АГА — УГГ — АГУ — ЦГЦ-
Белок: — тир — арг — трип — ср — арг-
Ответ. Последовательность мономеров белка: тирозин — аргинин — триптофан — серин — аргинин.
Фрагмент цепи А белка нормального гемоглобина состоит из 7 аминокислот, расположенных в следующей последовательности:
вал — лей — лей — трет — о — ГЛН — лез.
1. Какое строение фрагмента иРНК, что является матрицей для синтеза этого фрагмента молекулы гемоглобина?
2. Какое строение фрагмента ДНК, кодирующего данную иРНК?
Белок: вал — лей — лей — трет — о — глу — лез
иРНК: ГУУ — УУА — УУА — АЦУ — ЦЦУ — ЦАА — ААА
ДНК: ЦАА — ААТ — ААТ — ТГА — ГГА — ДНС — ТТТ
ГТТ ТТА ТТА АЦТ ЦЦТ ЦАА ААА
Биохимический анализ показал, что иРНК имеет 30% аденина, 18% гуанина и 20% урацила. Определите долю (в%) каждого нуклеотида в соответствующем фрагменте двухцепочечной ДНК?
Определяем процент цитозинових нуклеотидов в данной иРНК:
Определяем процент адениновых и тиминових нуклеотидов (отдельно) во фрагменте ДНК:
Определяем процент гуанинових и цитозиновог нуклеотидов (отдельно) во фрагменте ДНК:
Ответ. Доля каждого нуклеотида в соответствующем фрагменте двухцепочечной ДНК составляет 25%.
Белок состоит из 124 аминолислот. Сравните относительные молекулярные массы белка и гена, который его кодирует.
Состав белка — 124 аминокислоты;
1). Определяем относительную молекулярную массу белка:
2). Определяем количество нуклеотидов в составе гена, кодирующего данный белок: 124 х 3 х 2 = 744 (нуклеотиды).
3). Определяем относительную молекулярную массу гена:
4). Определяем, во сколько раз ген тяжелее белок:
Ответ. Относительная молекулярная масса гена в 20,7 раза больше, чем кодированного белка.
Гормон роста человека (соматотропин) — белок, содержащий 191 аминокислоту. Сколько кодируя нуклеотидов и триплетов входит в состав гена соматотропина?
Одну аминокислоту кодирует триплет нуклеотидов, следовательно, в состав гена соматотропного входит 191 триплет.
191 х 3 = 573 (нуклеотиды) — одна цепь;
573 х 2 = 1146 (нуклеотидов) — обе цепи.
Ответ . В состав гена соматотропного входит 191 триплет, содержащий 1146 нуклеотидов (обе цепи гена).
У больного синдром Фанкони (нарушение образования костной ткани) с мочой выделяются аминокислоты, которым соответствуют следующие триплеты иРНК: АУА, ГУЦ, АУГ, УЦА, УУГ, УАУ, ГУУ, АУУ. Определите, какие аминокислоты выделяются с мочой у больных синдромом Фанкони (см. Таблица «Генетический код»).
Аминокислоты: илей, вал, мет, сер, лей, тир, вал, илей.
Ответ. У больных синдромом Фанкони выделяются с мочой такие аминокислоты: изолейцин, валин, метионин, серин, лейцин, тирозин.
Экзон-интронная ОРГАНИЗАЦИЯ ГЕНОМА
Большинство структурных генов эукариот (участки ДНК) внутренне неоднородно. Они состоят из экзонных (информативных) и интронных (без информационной) фрагментов.
При транскрипции в ядре сначала синтезируется про-иРНК (незрелая), которая имеет в себе как экзоны, так и интроны. Далее с помощью комплекса ферментов без информационной участки вырезаются и разрушаются, а информативные соединяются в новый полинуклеотидний цепь — зрелую иРНК. Механизм созревания иРНК в ядре называется сплайсингом.
Фрагмент цепи молекулы ДНК содержит 1100 нуклеотидов, из них 100, 120, и 130 нуклеотидов образуют интронная участка. Определите, сколько аминокислот кодирует этот фрагмент ДНК:
N (интронных нуклеотидов) — 100, 120, 130.
1). 100 + 120 + 130 = 350 (количество нуклеотидов, образующих интронная участка);
2). 1100 — 350 = 750 (количество нуклеотидов, образующих экзонных участка);
3). 750: 3 = 250 (аминокислотных остатков).
Ответ. Этот фрагмент ДНК кодирует 250 аминокислот.
Структурный ген (фрагмент молекулы ДНК) содержит 384 цитозинових нуклеотидов, составляет 20% от их общего количества. В экзонных участках этого гена закодировано белок, состоящий из 120 аминокислотных остатков.
1. Какой нуклеотидный состав гена?
2. Какая относительная молекулярная масса интронных участков гена?
3. Насколько зрелая иРНК короче про-иРНК?
N (аминокислот в белке) — 120;
1. Нуклеотидный состав гена -?
2. Мr (интронных участков гена) -?
3. Насколько зрелая иРНК короче про-иРНК -?
1. Определяем общее количество нуклеотидов в фрагменте ДНК. Поскольку на цитозин нуклеотиды приходится 20% от их количества, то общее количество нуклеотидов составляет:
По принципу комплиментарности:
Г = Ц = 384 нуклеотиды = 20%. Отсюда: А = Т = 30%.
Х нуклеотидов — 30%; х = 576 9нуклеотидив);
2. Находим количество нуклеотидов в экзонных участках гена:
120 3 х 2 = 720 (нуклеотидов).
Находим количество нуклеотидов в интронных участках гена:
1920 — 720 = 1200 (нуклеотидов).
Находим относительную молекулярную массу интронных участков гена:
Mr (интро. Участков гена) = 1200 х 345 = 414000.
3. Длина молекулы про-иРНК равна длине структурного гена:
l (о-иРНК) = (384 + 576) х 0,34 = 326,4 (нм).
Зрелая иРНК состоит только из информативной части. Ее длина составляет:
l (зрелой РНК) = 120 х 3 х 0,34 = 122,4 (нм).
Разница в длине о-иРНК и зрелой иРНК составляет:
Ответ. 1. Ген содержит по 576 адениновых и тиминових нуклеотидов, и по 384 гуанинових и цитозинових нуклеотиды. 2. Относительная молекулярная масса интронных участков гена — 414 000. 3. Разница в длине между про- иРНК и зрелой иРНК — 204 нм.
1. Барна Иван Общая биология. Сборник задач. — Киев: Издательство «Ранок», 2009 — 736 с.
2. Биология: Справочник для абитуриентов и школьников общеобразовательных учебных заведений: Учебно-методическое пособие. — 2-е издание. — К .: Литере ЛТД, 2009. — 656 с.
3. Овчинников С.А. Сборник задач и упражнений по общей биологии: Учебное пособие. — Донецк: Третье тысячелетие, 2002. — 128 с.
4. Биология. Словарь-справочник .: Учеб. Пособие / /Авт.-сост .: В.П. Попович, Т.А. Сало, Л.В. Деревинская. — М .: Страна грез, 2006. — 112 с.
источник
Источник
Молекула гемоглобина: 4 субъединицы окрашены в разные цвета
Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.
Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2
Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]
Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].
Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].
Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].
Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.
Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.
Строение[править | править код]
Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).
Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.
Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).
Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.
Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.
Физиология[править | править код]
Изменение состояний окси- и дезоксигемоглобина
В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).
Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.
Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].
Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.
Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.
Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.
Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.
Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]
Гемоглобин при заболеваниях крови[править | править код]
Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.
Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.
Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.
Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.
См. также[править | править код]
- Гемоглобин А
- Гемоглобин С (мутантная форма)
- Эмбриональный Гемоглобин (эмбриональный)
- Гемоглобин S (мутантная форма)
- Гемоглобин F (фетальный)
- Кобоглобин
- Нейроглобин
- Анемия
- Порфирия
- Талассемия
- Эффект Вериго — Бора
Примечания[править | править код]
- ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
- ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
- ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
- ↑ Лауреаты нобелевской премии. Макс Перуц.
- ↑ Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
- ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
- ↑ Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
- ↑ Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
- ↑ Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.
Литература[править | править код]
- Mathews, CK; van Holde, KE & Ahern, KG (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
- Levitt, M & Chothia, C (1976), Structural patterns in globular proteins, Nature
Ссылки[править | править код]
- Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
- Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
- Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.
Источник