Как происходит синтез гемоглобина

Как происходит синтез гемоглобина thumbnail

Гемоглобин синтезируется в клетках костного мозга. Все необходимые для синтеза гемоглобина составные части поступают с током крови.

Белковая часть молекулы синтезируется как и все простые белки из аминокислот матричным способом.

Синтез гема протекает в несколько стадий под влиянием различных ферментов:

1. Вначале происходит образование дельта-аминолевулиновой кислоты. Это реакция протекает в результате конденсации сукцинил-КоА и глицина в митохондриях под действием фермента аминолевулинатсинтетазы.

2.Следующая реакция протекает в цитоплазме. Происходит образование порфобилиногена в результате реакции конденсации двух молекул дельта-аминолевулиновых кислот.

3.Затем, в результате многоступенчатых реакций из четырех монопиррольных молекул порфобилиногена образуется протопорфирин 1Х, являющийся непосредственным предшественником гема.

4. Протопорфирин IX присоединяет молекулу железа (реакция осуществляется под влиянием фермента гемсинтетазы или феррохелатазы) и образуется гем, который затем ис­пользуется для биосинтеза всех гемопротеидов. Оба фермен­та, участвующие в синтезе ПБГ, регулируемые, они ингибируются гемом и НЬ. Поэтому гем не образуется в избытке или недостатке. Также строго в определенном количестве образу­ется и белковая часть Нb, т. к. ее синтез может происходить только в присутствии тема, и образующиеся полипептидные цепи тут же соединяются с гемом. При низкой концентрации гема, когда нарушается его синтез, образование гемоглобина также замедляется.

Каждая из образовавшихся полипетидных цепей глобина присоединяются кодному гему, образуя моном ер гемоглобиан. 4 таких мномера, объединивщись, образуют гемоглобин.

Основной функцией гемоглобина является перенос кислорода из легких к тканям и перенос углекислого газа от тканей к легким, участие в поддержке рН крови. Свои функции гемоглобин выполняет только в составе эритроцита. Продолжительность жизни эритроцита 110-120 дней. Затем эритроцит подвергается гемолизу

3. Распад гемоглобина. Превращение билирубина в желудочно- кишечном тракте. Свободный и связанный билирубин. Свойства.

При гемолизе эритроцитов гемоглобин попадает в кровь и соединяется с белком гаптоглобином, в виде комплекса гемоглобин-гаптоглобин (Нр-Нb) транспортируется в клетки макрофагально-моноцитарной системы (ММС): это Купферовы клетки печени, клетки лимфоузлов, селезенки, пейеровых бляшек в кишечнике.

Процесс начинается с окислительного расщепления метинового мостикамежду первым и вторым пиррольными кольцами и образуется вердоглобин. Затем от вердоглобина отщепляется глобин, железо и образуется биливердин (зеленого цвета), вещество линейной структуры. Железо соединяется с b-глобулинами и в виде трансферина доставляется в печень и селезенку, где депонируется в виде ферритина. Глобин распадается так же как и все простые белки до аминокислот.

Биливердин восстанавливается за счет НАДФН2 в неконьюгированный,

свободный билирубин, который не растворим в воде и является токсичным соединением. Свободный билирубин выходит из клеток ММС, соединяется с

альбуминами и поступает в гепатоциты. В крови он называется непрямым потому, что дает реакцию с реактивом Эрлиха не сразу, а после добавления в сыворотку крови кофеинового реактива или спирта для осаждения белка.

В Купферовых клетках печени распад гемоглобина также начинается с

образования вердоглобина, затем биливердина. В печени непрямой билирубин обезвреживается в гепатоцитах путем реакции конъюгации, соединяясь с одной или двумя молекулами глюкуроновой кислоты, образуя моно- или диглюкуронид билирубина. Такой билирубин называется конъюгированным и

связанным и прямым. Этот билирубин хорошо растовряется в воде, не обладает токсическими свойствами. Биливердин и прямой билирубин собираются в желчном пузыре, придавая желчи оливковый цвет и потому их относят к пигментам желчи. Желчь поступает в тонкий кишечник, но в желчном протоке прямой билирубин, теряя глюкуроновые кислоты, снова превращается в непрямой. Биливердин проходит через весь кишечник не изменяя своей химической структуры и удаляется с калом, окрашивая его в зеленоватый цвет, т.е. он является пигментом кала. А непрямой билирубин в кишечнике восстанавливается до мезобилиногена (уробилиногена), часть которого всасывается в воротную вену и возвращается в печень, где распадается до бесцветных моно- и дипирролов. Последние выводятся через почки вместе с мочой.

Большая часть мезобилиногена поступает в толстый кишечник, где под

влиянием ферментов микроорганизмов восстанавливается в стеркобилиноген. Часть стеркобилиногена, всасываясь в кровь через геморроидальные вены, попадает в почки. В моче под действием света и воздуха происходит окисление стеркобилиногена до стеркобилина, который придает моче желтый цвет, т.е. является пигментом мочи. Остальная часть стеркобилиногена окисляется в толстом кишечнике на свету до стеркобилина и вместе с биливердином является пигментом кала, придавая ему коричнево-зеленый цвет.

У грудных детей в кишечнике нет гнилостных бактерий, поэтому

билирубин не превращается в стеркобилиноген и выводится как таковой. Соответственно цвет кала у детей обусловлен биливердином и билирубином (желто-зеленый).

У детей в первые три месяца эмбрионального периода образуется эмбриональный гемоглобин. Затем он преобразуется в фетальный (гемоглобин F), который доминирует вплоть до рождения ребенка. После рождения в течение первого месяца жизни фетальный гемоглобин постепенно заменяется на гемоглобин взрослого (гемоглобин А), отличающегося составом полипептидных цепей. Эмбриональный и фетальный гемоглобин обладают более высоким сродством к кислороду по сравнению с гемоглобином взрослого.

Пигменты желчи, кала и мочи.

При распаде гемоглобина образуются пигменты желчи, кала и мочи.

Читайте также:  Что означает если гемоглобин повышен

Пигменты желчи: биливердин (зеленого цвета), связанный билирубин (глюкурониды билирубина –желтого цвета). Цвет желчи зависит от соотношения этих пигментов.

Пигменты кала: биливердин (зеленого цвета), стеркобилин (коричневого цвета)

Пигмент мочи: стеркобилин

Цвет сыворотки крови тоже зависит в определенной степени от наличия в ней билирубина. В норме количество общего би­лирубина в крови равно 8—20 мкмоль/л, на долю непрямого билирубина приходится 75- 100%, а прямого от 0 до 25%. Количество прямого билирубина незначительно. Прямой билирубин про­ходит через пачечную ткань, и появляется в моче, непрямой билирубин в моче появиться не может, вследствие его нераст­воримости в воде.

Источник

Тема 3 (вопрос 4 и 5).

Гем состоит из иона двухвалентного железа и порфирина. В основе структуры порфиринов находится порфин. Порфин представляет собой четыре пиррольных кольца, связанных между собой метеновыми мостиками. С наибольшей скоростью гем синтезируется в костном мозге (для синтеза гемоглобина ретикулоцитами) и в печени (для образования цитохрома Р-450).

Синтез гема происходит в несколько стадий:

1. На первой стадии в митохондриях сукцинил-КоА взаимодействует с глицином с образованием δ-аминолевулиновой кислоты. Эту реакцию катализирует специфический пиридоксальзависимый фермент δ-аминолевулинатсинтаза. Фермент активируется стероидами и ингибируется по типу обратной связи конечным продуктом – гемом. Продукт реакции из матрикса митохондрий переходит в цитозоль.

2. На второй стадии, в цитозоле, происходит конденсация 2-х молекул
δ-аминолевулиновой кислоты с образованием порфобилиногена. Фермент – порфобилиногенсинтаза – ингибируется конечным продуктом.

3. Из 4-х молекул порфобилиногена синтезируется протопорфирин IX, являющийся предшественником гема.

4. Протопорфирин IX присоединяет молекулу Fe при участии феррохелатазы (гемсинтаза) и образуется гем. Источником же­леза в этой реакции является белок ферритин, который депонирует железо.

Механизм регуляции синтеза тема в неэритроидных клетках имеет определенные отличия. Так, в клетках печени, где синтез гема происходит на высоком уровне, гем является отрицательным регулятором синтеза δ-аминолевулинатсинтазы по механизму репрессии-депрессии в процессе транскрипции. Главный регуляторный эффект гема состоит в том, что синтез фермента значительно ускоряется в отсутствии гема и замедляется в его присутствии.

Синтез белковой части гемоглобина происходит на рибосомах. Цепи α и β глобина синтезируются на полисомах, образованных, как правило, пятью рибосомами. Цепь α освобождается первой, присоединяется к β-цепи, еще связанной с рибосомой и отделяет ее, образуя димер αβ. Два димера соединяются в молекулу гемоглобина α2β2.

Соединение гема с глобином может происходить или в процессе синтеза полипептидных цепей, или после окончания синтеза глобина. Синтез полипептидных цепей происходит только в присутствии гема. При низкой концентрации гема синтез глобина замедляется. Отсюда следует, что синтез гема и глобина происходит координировано и ни один из этих компонентов не образуется в избыточном или недоста­точном количестве.

                                               Катаболизм гемоглобина

Эритроциты имеют короткое время жизни (примерно 120 дней). При физиологических условиях в организме взрослого человека разрушается около 1 – 2×1011 эритроцитов в сутки. Их катаболизм происходит, главным образом, в ретикулоэндотелиальных клетках селезёнки (РЭС), лимфатических узлов, костного мозга и печени. При распаде гемоглобина образуется билирубин. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250-350 мг. Дальнейший метаболизм билирубина происходит в печени.

Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным)или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.

Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.

Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой. Реакцию катализирует УДФ-глюкуронилтрансфераза. Образующийся билирубиндиглюкуронид получил название прямого(коньюгированного) билирубина или связанного. Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.

Прямой билирубин – это нормальный компонент желчи, попадающий в кровь в незначительном количестве. Он может проходить через почечный барьер, но в крови в норме его мало, поэтому в моче обычными лабораторными методами он не определяется.

Вместе с желчью прямой билирубин выводится в тонкий кишечник. В кишечнике билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами. Освободившийся билирубин под действием кишечной микрофлоры восстанавливается с образованием сначала мезобилирубина, а затем мезобилиногена(уробилиногена). Небольшая часть уробилиногенов, всасываясь в тонком кишечнике и верхнем отделе толстого, через систему воротной вены попадает в печень, где практически полностью разрушается до дипиррольных соединений. Уробилиноген при этом в общий кровоток не поступает и в моче не определяется.

Читайте также:  Что надо кушать если низкий гемоглобин при беременности

Основная часть уробилиногена поступает в толстый кишечник, где под влиянием микрофлоры подвергается дальнейшему восстановлению с образованием стеркобилиногена. Образовавшийся стеркобилиноген почти полностью выделяется с калом. На воздухе он окисляется и превращается в стеркобилин, являющийся одним из пигментов кала. Небольшая часть стеркобилиногена попадает путем всасывания через слизистую толстого кишечника в систему нижней полой вены (через геморроидальные вены), доставляется в почки и выводится с мочой (4 мг/сутки).

Источник

Гемоглобин синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени. В костном мозге гемоглобин необходим для синтеза гемоглобина в ретикулоцитах, в гепатоцитах – для образования цитохрома Р450ю Первая реакция синтеза гема – образование 5-аминолевулиновой кислоты из глицина и сукцинил-КоА идёт в матриксе митохондрий, где в ЦТК образуется один из субстратов этой реакции – сукцинил-КоА. Эту реакцию катализирует пиридоксальзависимый фермент аминолевулинатсинтаза.

Из митохондрий 5-аминолевулиновая кислота поступает в цитоплазму. В цитоплазме проходят промежуточные этапы синтеза гема: соединение 2 молекул 5-аминолевулиновой кислоты молекулу порфобилиногена, дезаминированиепорфобилиногена с образованием гидроксиметилбилана, ферментативное превращение гидроксиметилбилана в молекулу уропор-фобилиногена III, декарбоксилирование последнего с образованием копропорфириногена III. Гидроксиметилбилан может также неферментативно превращаться в уропорфириноген I, который декарбоксилируется в копропорфирино-ген I. Из цитоплазмы копропорфириноген III опять поступает в митохондрии, где проходят заключительные реакции синтеза гема. В результате двух последовательных окислительных реакций копропорфириноген III превращается в протопорфириногенIX, а протопорфириноген IX – в протопорфирин IX. Фермент феррохела-таза, присоединяя к протопорфирину IX двухвалентное железо, превращает его в гем. Источником железа для синтеза гема служит депонирующий железо белок ферритин. Синтезированный гем, соединяясь с б и в-полипепептидными цепями глобина, образует гемоглобин. Гемоглобин регулирует синтез глобина: при снижении скорости синтеза гема синтез глобина в ретикулоцитах тормозится.

Синтез гемма

Рис. 1. Синтез гемма

Цифрами на схеме указаны ферменты: 1 – аминолевулинатсинтаза; 2 – аминолевулинатдегидратаза; 3 – порфобилиногендезаминаза; 4 – уропорфириноген III косинтаза; 5 – уропорфириногендекарбоксилаза; 6 – копропорфи-риноген III оксидаза; 7 – протопорфириногеноксидаза; 8 – феррохелатаза.

Буквами обозначены заместители в пиррольных кольцах: М – метил, В – винил, П – остатки пропионовой кислоты, А – ацетил, ПФ – пиридоксальфосфат. Донором железа служит депонирующий железо в клетках белок ферритин.

Витамин В12 – биосинтез, биологическая роль. Значение витаминов группы К

Витамин В12 и родственные ему кобаламины играют важную роль в жизнедеятельности человека. Они участвуют в различных биохимических превращениях, предотвращают развитие злокачественной анемии крови, различных заболеваний печени, используются при лечении лучевой болезни. Кобаламины синтезируются различными микроорганизмами. В промышленности производство витамина В12 основано на использовании пропионовокислых бактерий.

Механизм образования витамина В12, наиболее сложного из известных тетрапиррольных пигментов, выяснен значительно лучше, чем, например, хлорофиллов и бактериохлорофиллов. По образному выражению известного английского ученого А. Баттерсби, внесшего большой вклад в раскрытие биосинтеза витамина В12.

Разветвление основного пути биосинтеза тетрапиррольных пигментов в сторону витамина В12 начинается с Урогена. Сначала под действием особых ферментов происходит введение метильной группы. Соединение, получившее название прекоррин-1, далее подвергается метилированию с образованием прекоррина-2. Третье метилирование проходит по мезо-углеродному мостику, и в результате возникает частично восстановленный макроцикл прекоррина-3.

Последующие превращения, каждое из которых контролируется своими ферментами, включает метилирование, сужение макроцикла с образованием корринового цикла, введение метильных групп и затем, два метилирования по мезо-мостикам и декарбоксилирование остатка уксусной кислоты. Заключает этот цикл превращений перегруппировка метильной группы с образованием важного промежуточного соединения – гидрогенобириновой кислоты.

На заключительном этапе биосинтеза кислота амидируется по остаткам уксусной кислоты и включает ионы двухвалентного кобальта, превращаясь в диамидкобириновой кислоты. Далее происходит восстановление Со2+ Со+, и эта активная форма превращается в диамидаденозилкобириновой кислоты. Наличие аденозильноголиганда, является необходимым условием для дальнейшего ступенчатого амидирования четырех карбоксильных групп. Оставшаяся карбоксильная группа кобировой кислоты участвует в образовании так называемой нуклеотидной петли.

Первоначально происходит присоединение 1-аминопропанола-2 с образованием соединения. Ферменты, контролирующие этот процесс, обладают высокой специфичностью к аденозилкобириновой кислоте. Фосфорилирование по гидроксильной группе аминопропанола дает фосфат. Последний превращается в коферментную форму витамина В12 аденозинкобаламина. Замена остатка аденозина на циано-группу приводит к цианкобаламину – лекарственной форме витамина В12. В организме происходит обратная замена [4].

Было установлено, что витамин В12 поступающий с пищевыми веществами, предохраняется от разрушения в кишечнике благодаря тому, что он соединяется с «внутренним» фактором Кастла, природа которого также была выявлена. Он оказался мукопротеином – белком, находящимся в желудочном соке здорового человека и содержащим в своём составе 11-12% гексозамина. Этот фактор был найден также в желтке яиц, в молоке и других пищевых продуктах.

Биохимическая роль витамина В12многогранна, роль витамина В12 заключается в синтезе нуклеиновых групп при превращении гомоцистеина в метионин, а оксиэтиламина в холин, являющихся липотропными факторами.

Читайте также:  Что можно дать ребенку в год для поднятия гемоглобина

Витамин В12 принимает участие и в реакции ацетилиривакоэнзима А, ускоряя процесс биологического окисления уксусной и пировиноградной кислот.Введение витамина В12 приводит к уменьшению содержания сахара в крови вследствии усиления окисления глюкозы в тканях. В 1948 г. было доказано положительное действие этого витамина на синтез пуриновых пиримидиновых оснований, т.е. на синтез рибонуклеиновой дезоксирибонуклеиновой кислот.

Предполагают, что витамин В12 способствует превращению глюкозы в дезоксирибозу. Источником в этом случае служат некоторые аминокислоты – глицин, глютаминовая и метионин.

Витамин В12 способствует накоплению жира у животных, ускоряя превращение аминокислот в глюкозу, которая переходит в жир.

Витамин В12 участвует в превращении каротина в витамин А и отложении последнего в печени, он обезвреживает никотиновую кислоту путём её метилирования с образовниемметилникотина.

К витаминам группы К относятся природные вещества – витамин K1 (фнллохннон) и витамин К2 (менахинон). Из синтетических препаратов известны витамин Кз (метннон) и водорастворимый препарат викасол, обладающие высокой биологической активностью. Свое название витамин К получил от слова «коагуляция» (свертываемость).

Витамины группы К участвуют в процессах свертывания крови. Они оказывают влияние на биосинтез прокоагулянтов и являются стимуляторами биосинтеза в печени четырех белков ферментов, необходимых для свертывания крови и образования активных тромбопластина и тромбина.

У взрослого человека витамин К2 синтезируется кишечной микрофлорой (1,5мг в сутки). Синтез витаминов К кишечной микрофлорой исключает возможность возникновения у взрослого человека первичного К-авитамнноза. У взрослого человека возможны вторичные К-авитаминозы, развивающиеся в результате прекращения усвоения витаминов К в кишечнике или вследствие прекращения его эндогенного синтеза кишечной микрофлорой. Частой причиной вторичной недостаточности витамина К являются болезни печени. Вторичный К-авитаминоз может иметь место при обтурационной желтухе, когда вследствие прекращения поступления желчи s двенадцатиперстную кишку нарушается усвоение жирорастворимых веществ, в том числе витаминов группы К.

Вопрос 89.Гормоны передней доли гипофиза и их действие на организм животных

Передняя доля гипофиза вырабатывает группу гормонов белковой или полипептидной структуры, влияющих на организм через действие на щитовидную железу, надпочечники и половые железы.

Аденогипофиз продуцирует также гормоны, действующие на органы и ткани организма – соматотропный гормон или гормон роста, гормон, стимулирующий пигментные клетки -меланоцито-стимулирующий гормон (МСГ), экзофтальмический фактор.

Соматотропный гормон, полученный из гипофизов различных животных и человека, обладает специфичностью, отличаясь по своим физико-химическим и иммунологическим свойствам. Гормон роста, полученный из гипофизов домашних животных, не оказывает биологического действия на приматов. Соматотропный гормон домашних животных, молекулярный вес которого в два раза больше, чем молекулярный вес гормона роста приматов, состоит из биологически активного ядра, общего для соматотропинов всех видов, и аминокислотной оболочки.

Основной стороной биологического действия гормона роста является его способность стимулировать анаболические процессы.

Гормон роста повышает содержание белка в печени, мышцах и тканях, уменьшает выделение азота. Под влиянием гормона роста уменьшается выделение мочой калия, фосфора, магния, натрия и хлора; выделение кальция увеличивается. Увеличивается количество внеклеточной жидкости. Уровень мочевины в крови снижается. Для проявления анаболического действия гормона роста необходимо наличие в организме определенного уровня кортизола, инсулина и тироксина.

Гормон роста оказывает действие на углеводный обмен. При достаточно длительном применении он повышает уровень сахара в крови [3].

Этот гипергликемизирующий эффект осуществляется рядом механизмов. Гормон роста увеличивает поступление углеводов из печени в кровь. Гормон роста тормозит переход углеводов в жиры, повышает выделение инсулина. Это связано с непосредственным действием гормона на островки поджелудочной железы, либо является следствием повышенного поступления глюкозы в кровь. Одновременно гормон роста стимулирует выработку глюкагона клетками островков поджелудочной железы, активизирует инсулиназную активность печени, повышает выработку В-липопротеидного антагониста инсулина.

Гормон роста оказывает на углеводный обмен фазное действие. В первые часы после инъекции он вызывает снижение сахара крови, возможно, в связи с усилением выработки инсулина или вследствие высвобождения связанного инсулина. В дальнейшем проявляется гипергликемизирующее действие гормона роста. При длительном избытке гормона роста, наступает истощение инсулярного аппарата и может развиться сахарный диабет. У неполовозрелых животных, у которых способность инсулярного аппарата к регенерации велика, гормон роста не оказывает диабетогенного действия.

Гормон роста оказывает жиромобилизующее действие. После его введения повышается содержание неэстерофицированных жирных кислот в крови и имеет место увеличение количества жира в печени.

Гормон роста стимулирует окисление жира в печени, вызывая преходящуюгиперкетонемию. Выработка кетоновых тел в печени под влиянием гормона роста повышается. У животных с экспериментальным диабетом и у больных сахарным диабетом может развиться кетоацидоз. Этот эффект выражен у больных сахарным диабетом с удаленным гипофизом. Эффект гормона роста на жировой и белковый обмен проявляется на фоне «обусловливающего» пермессивного действия физиологического количества кортизола. Большие дозы гликокортикоидов тормозят жиромобилизующее действие гормона роста. Гормон роста усиливает функцию почек, повышает клиренс креатинина. Меланоцито-стимулирующий гормон (МСГ) вырабатывается у животных средней долей гипофиза, которая у человека является рудиментарным органом.

Источник