В транспорте кислорода от легких к тканям участвует гемоглобин

Основная функция гемоглобина – транспорт кислорода, которую онвыполняет очень эффективно. Гемоглобин артериальной крови насыщен кислородом приблизительно на 96%, гемоглобин венозной крови – на 64% (White А. et al, 1981).

Уменьшение степени насыщения на 32 % соответствует количеству О2, потребляемому тканями. Принимая, что 100 мл крови содержат 15,0 г гемоглобина и что каждый грамм гемоглобина может связать 1,34 мл О2 (число Хюфнера) находим, что:

0,96 х 1,34 х 15 = 19,2 мл О2 –

транспортируется 100 мл артериальной крови (19,2 объемных %);

0,64 х 1,34 х 15 = 12,8 мл О2 –

транспортируется 100 мл венозной крови (12,8 объемных %);

19,2 – 12,8 = 6,4 мл О2 (6,4% объемных %)

или

0,32 х 1,34 х 15 = 6,4 мл О2 (6,4 % объемных %)

отдается тканям каждыми 100 мл артериальной крови, протекающими через капилляры.

Поскольку минутный объем крови (МОК) равен 5 литрам, в сутках 1440 минут, определяем, что в течение суток общий объем перекачиваемой сердцем крови составит:

5 х 1440 = 7200 литров

А так как один литр артериальной крови способен транспортировать 19,2 объемных % кислорода, из которых 6,4 объемных процента потребляются тканями, находим:

7200 х 19,2

———————– = 1382 литра – количество кислорода, транспортируемое

100 за сутки артериальной кровью

7200 х 6,4

———————– = 461 литр – количество кислорода, потребляемое тканями

100 за сутки из артериальной крови

В целом, за сутки кровь переносит от легких к тканям около 1400 л кислорода, из которых 450-600 л потребляются тканями. Причем, практически весь перенос кислорода обеспечивается гемоглобином, т.к. кислород плохо растворим в водных растворах. Ограниченная растворимость кислорода позволяет транспортировать его в растворенном состоянии в количестве, составляющем всего 0,3 мл О2 / 100 мл крови (White А. еt al, 1981) при РаО2 равном 12,7 кПа (95 мм рт ст). Это соотношение вытекает из закона Генри-Дальтона, в соответствии с которым «количество растворенного в жидкости газа пропорционально его напряжению». Важно отметить, что несмотря на малое количество растворенного кислорода, именно эта его фракция обусловливает РаО2.

Гемоглобин растворен в водном цитозоле эритроцитов в очень высокой концентрации, порядка 34%. Его синтез осуществляется в процессе созревания ретикулоцитов и перехода их в эритроциты. Гемоглобин состоит из белка – глобина и простетической группы – гема. Гем представляет собой соединение, в молекулу которого входят атом двухвалентного железа и 4 замещенных пиррольных кольца, связанных между собой метиновыми группами ( – СН = ). Скелетом молекулы гема служит порфирин. Fe2+ имеет в геме координационное число, равное 6, т.е. 6 пар электронов. Четыре из этих пар связаны с атомами азота, одна пара с белком (глобином) через гистидин. Оставшаяся пара электронов используется для образования донорско-акцепторной координационной связи (ковалентной химической связи) с кислородом (рис. 12).

Функциональные свойства гемоглобина, обусловленные его уникальной структурой, специфически соответствуют задачам обеспечения дыхательной функции. Каждая из четырех полипептидных цепей глобина содержит по одной молекуле гема. А поскольку атом железа в геме может обратимо связывать одну молекулу О2 понятно, что одна молекула полностью оксигенированного гемоглобина (НbО2) содержит четыре молекулы кислорода.Гемоглобин, отдавший кислород тканям, называется свободным (неоксигенированным) гемоглобином.

Рис. 12.Координационные связи железа в молекуле гема

(по A. Ленинджеру, 1985)

В процессе присоединения и отдачи кислорода железо в молекуле гемоглобина свою валентность не меняет, т.е. при присоединении кислорода или при его отдаче железо не окисляется и не восстанавливается. Следовательно, в этих случаях речь идет об оксигенированном (оксигемоглобин) и неоксигенированном (свободном) гемоглобине, но не об окисленном и восстановленном гемоглобине.

Окисленный гемоглобин – это метгемоглобин (MetHb), содержащий Fe3+. Он не способен присоединять кислород, однако Fe3+ в MetHb может взаимодействовать со многими анионами, например, при щелочном рН с ОН- и при кислом рН – с Cl-. В небольшом количестве, составляющем 0, 5% от всего гемоглобина, метгемоглобин образуется ежесуточно в условиях in vivo (White A. et al, 1981).

Кроме кислорода к атому железа в молекуле гемоглобина могут присоединяться и другие вещества (лиганды) : Н2О; СО; СN. Их сродство, проявляемое к атому железа, неодинаково. Оно наиболее выражено у цианидов, затем у окиси углерода, затем у кислорода и наименее выражено у воды.

Степень насыщения гемоглобина кислородом зависит от парциального давления кислорода (РО2). Это давление в легких ( 100 мм рт.столба) достаточно, чтобы практически полностью оксигенировать весь гемоглобин в эритроцитах. Уникальной особенностью связывания гемоглобином О2 является кооперативное взаимодействие между гемсвязывающими участками, получившее название гем-гем – взаимодействие. И хотя прямых физических контактов между четырьмя группами гема нет, кооперативность связывания О2 проявляется в том, что по мере протекания оксигенирования гемоглобина облегчается связывание последующих молекул кислорода. При физиологических условиях сродство к О2 у гемоглобина и у полностью оксигенированного гемоглобина отличается в 500 раз (A. White et al, 1981); это показывает, что после присоединения первых молекул О2 сродство частично насыщенного гемоглобина к кислороду увеличивается.Данное положение характеризуетсясигмовидной формой кривой диссоциации HbO2 (рис. 5).Такая формауказывает на то, что связывание О2 одной из гемовых групп гемоглобина влияет на константы диссоциации других гемовых групп этой же молекулы. Сигмовидный характер кривой диссоциации НbО2 имеет большое физиологическое значение. Как видно из рис. 5 парциальное давление О2 существенно влияет на насыщение гемоглобина в пределах от 20 до 60 мм рт. ст., когда показатель насыщения кислородом характеризуется наиболее крутым подъемом отрезка кривой. При больших значениях РО2 кривая насыщения приобретает пологий характер, увеличиваясь в диапазоне 60-90 мм рт. ст. всего на 7%.

Читайте также:  Если гемоглобин выше что делать

Связывание гемоглобином кислорода зависит не только от РО2. Этот процесс тонко регулируется рядом соединений, подобно тому как это имеет место при действии на аллостерический фермент.Таким регуляторным действием обладают 2,3 – дифосфоглицерат, диоксид углерода (СО2) и ионы Н+.

Главной фракцией фосфатов в эритроцитах является 2,3 – дифосфоглицерат (ДФГ); его внутриклеточная концентрация составляет приблизительно 4-5 – ммоль, т.е. сопоставима с концентрацией гемоглобина. Дифосфоглицерат (ДФГ) связывается с тетрамерным гемоглобином при нейтральном рН, образуя комплекс с соотношением компонентов 1 : 1. Связывание с гемоглобином ДФГ обусловлено наличием в молекуле последнего отрицательно заряженных групп (рис. 13):

-О О

С

Н С О Р О-

Н С Н

О

О Р О

О-

Рис. 13. Структура молекулы ДФГ(по А. Ленинджеру, 1985).

Жирным выделены группы, взаимодействующие с β-цепями

Местом связывания служит центральная полость или канал в молекуле гемоглобина, выстланный многочисленными положительно заряженными R-группами β-цепей. В итоге образуется поперечная связь между двумя β-субъединицами. При связывании гемоглобина кислородом ДФГ вытесняется из этого канала.

Главным результатом образования комплекса ДФГ-гемоглобин является снижение сродства гемоглобина к кислороду:

НbO2 + ДФГ Нb • ДФГ + О2

Регулирующее влияние ДФГ на сродство гемоглобина к кислороду в эритроцитах зависит от величины парциального давления кислорода в легких. Чем ниже это давление (при подъеме на высоту), тем выше концентрация ДФГ в эритроцитах, тем легче будет освобождаться кислород от связи с гемоглобином в тканях.

Таким образом, при фиксированной концентрации оксигенированного гемоглобина, увеличение концентрации ДФГ повышает диссоциацию НbO2. При увеличении же РО2 и росте концентрации НbО2 будет усиливаться диссоциация комплекса Нb ДФГ.

Повышенное сродство крови плода к кислороду не является следствием различий сродства фетального (НbF) и постнатального (НbA) гемоглобинов к О2, поскольку кривые диссоциации изолированных НbАО2 и НbFO2 существенно не отличаются. Этот феномен повышенного сродства к кислороду крови плода является результатом менее эффективного связывания ДФГ фетальным гемоглобином, поскольку на ДФГ – связывающем участке НbF незаряженный Sery γ 143 заменяет His β 143.

В крови, консервированной в некоторых средах (цитрат-декстрозной) концентрация ДФГ снижается (в течение 10 дней с 4,5 до 0,5 мМ). Гемоглобин такой крови приобретает очень высокое сродство к кислороду, в связи с чем увеличивается риск развития гипоксии, обусловленной снижением отдачи им кислорода. Тем более, что восстановление содержания ДФГ самими эритроцитами происходит медленно (за 24 часа – до половины нормальной концентрации). Исправление ситуации путем добавления экзогенного ДФГ не эффективно, поскольку высокий отрицательный заряд его молекулы не позволяет ей проникать через мембрану эритроцитов. В связи с этим используются вещества, добавление которых к консервированной крови обеспечивает поддержание нормальной концентрации ДФГ (Волкова Н.П., 2005).

Способность гемоглобина взаимодействовать с СО2 и ионами Н+ определяется не наличием атома Fe2+ в гемах, а другими участками его молекулы, с которыми происходит связывание этих соединений. В частности, ионы водорода присоединяются к R – группам остатков гистидина в α и β – цепях глобина :

R CH COOH (общая формула аминокислоты)

NH2

R – группа, с которой связывается

ион водорода.

Что касается диоксида углерода, то он присоединяется к концевой α-аминогруппе каждой из четырех полипептидных цепей с образованием карбаминогемоглобина:

O O

R CH C + CO2 R CH C

OH OH

NH2 NHCOO- + H+

карбаминоконцевой остаток

( карбаминогемоглобин )

Важно подчеркнуть, что процессы связывания с гемоглобином О2, Н+ – ионов и СО2 (как и ДФГ) взаимозависимы. Эту взаимозависимость иногда называют кооперативным эффектом гемоглобина, который заключается в том, что изменение концентрации одного из этих веществ влияет на связывание гемоглобина с другими. В частности,связывание с гемоглобином СО2 и ионов водорода снижает его способность связывать кислороди наоборот:связывание с гемоглобином кислорода снижает его способность связывать СО2 и ионы Н+.Поэтому в периферических тканях с относительно низким значением рН и высокой концентрацией СО2 сродство Нb к кислороду падает по мере связывания СО2 и ионов водорода. И наоборот, в легочных капиллярах выделение СО2 и сопутствующее ему повышение рН крови приводят к увеличению сродства гемоглобина к кислороду. Это влияние величины рН и концентрации СО2 на связывание и освобождение кислорода гемоглобином называется эффектом Бора(в честь датского физиолога Христиана Бора, впервые открывшего его).

В основе данного эффекта лежит изменение четвертичной структуры (т.е. упаковки субьединиц молекулы белка) гемоглобина при его оксигенации. В результате молекула оксигенированного гемоглобина приобретает несколько более компактную структуру по сравнению с неоксигенированным. Вследствие этого аминокислотные остатки в α и β – цепях, связывающие ионы водорода, перемещаются из относительно гидрофильного окружения в более гидрофобное, что облегчает отщепление ионов водорода от протонированных групп. Иначе говоря, протонированные группы при оксигенации гемоглобина приобретают свойства более сильных кислот (как донаторов ионов водорода). Т.е. НbО2 более сильная кислота (в 70 раз – Войнов В.А., 1992), чем ННb. Можно сказать и так, что оксигенированный гемоглобин (НbO2) плохо присоединяет протоны, но зато легко их отдает. А неоксигенированный гемоглобин наоборот – плохо отдает протоны, но зато легко их присоединяет (ННb).

Читайте также:  Низкий гемоглобин при заболеваниях крови

В легочной ткани вследствие уменьшения РСО2 и превращения гемоглобина в НbО2 освобождается также СО2, находящийся в виде карбаминогемоглобина..

Повышение или снижение сродства Hb к кислороду проявляется изменением кривой диссоциации оксигемоглобина (рис. 14).

В транспорте кислорода от легких к тканям участвует гемоглобин

Рис. 14.Кривая диссоциации оксигемоглобина. Влияние рН(по A. Ленинджеру, 1985)

Эти изменения обозначаются понятием «сдвиг вправо» и «сдвиг влево». При сдвиге вправо, как это следует из рисунка, при снижении рН (рН = 7,2), 50% насыщение Hb кислородом, которое в норме происходит при значениях РаО2 ≈ 26,6 мм рт. ст, будет осуществляться уже при больших значениях РаО2, приближающихся к 40 мм рт. ст. Это означает, что сродство Hb к кислороду понизилось. Соответственно, при сдвиге влево (рН = 7,6) 50% насыщение Hb кислородом происходит при меньших, чем при нормальном рН значениях РаО2. Это означает, что сродство Hb к кислороду оказалось повышенным. Помимо кислотно-основного состояния на характер кривой диссоциации оксигемоглобина влияют и другие факторы (табл. 3).

Таблица 3.

Источник

Гемоглобин. Роль гемоглобина в транспорте кислорода

Обычно из легких в ткани переносятся эритроцитами в химической связи с гемоглобином около 97% кислорода. Оставшиеся 3% кислорода транспортируются в физической растворенной форме плазмой крови. Таким образом, в нормальных условиях почти весь кислород переносится в ткани, будучи связанным с гемоглобином.

Химический состав гемоглобина представлен в наших остальных статьях, где говорилось, что молекула кислорода легко и обратимо связывается с гемом гемоглобина. При высоком Ро2, как это бывает в легочных капиллярах, кислород связывается с гемоглобином, а при низком Р02, как в капиллярах тканей, кислород освобождается от связи с гемоглобином. Такой механизм обеспечивает почти весь транспорт кислорода из легких в ткани.

Кривая диссоциации оксигемоглобина. На рисунке приведена кривая диссоциации оксигемоглобина, демонстрирующая прогрессивный прирост процентной доли оксигемоглобина (процента насыщения гемоглобина кислородом) при увеличении Ро2 в крови. В крови, покидающей легкие и входящей в системные артерии, напряжение О2 обычно составляет примерно 95 мм рт. ст., и на кривой диссоциации видно, что насыщение системной артериальной крови кислородом составляет 97%.

В нормальной возвращающейся из периферических тканей венозной крови напряжение О2 составляет около 40 мм рт. ст. и 75% — насыщение гемоглобина кислородом.

Максимальное количество кислорода, которое может находиться в связи с гемоглобином крови. В 100 мл крови здорового человека содержится около 15 г гемоглобина, и каждый грамм гемоглобина может связать максимально 1,34 мл кислорода (химически чистый гемоглобин может связать 1,39 мл кислорода, но примеси типа метгемоглобина снижают это количество). Итак, 15×1,34 = 20,1, значит, в среднем содержащееся в 100 мл количество гемоглобина при 100% насыщении может связать около 20 мл кислорода. Обычно это обозначают как 20 об% (объемных процентов).

роль гемоглобина

Кривая диссоциации оксигемоглобина может строиться не от процентного насыщения гемоглобина кислородом, а от количества содержания объемных процентов кислорода.

Количество кислорода, высвобождаемого гемоглобином во время прохождения артериальной крови через ткани.

В обычных условиях в системной артериальной крови, насыщенной кислородом на 97%, общее количество связанного с гемоглобином кислорода составляет около 19,4 мл на 100 мл крови. При прохождении через капилляры ткани этот объем снижается до 14,4 мл (Р02 — 40 мм рт. ст., насыщение гемоглобина — 75%). Итак, в нормальных условиях каждые 100 мл крови доставляют от легких к тканям около 5 мл кислорода.

При тяжелой физической работе мышечные клетки потребляют кислород с повышенной скоростью, что может привести к падению Р02 в интерстициальной жидкости мышцы от нормального уровня 40 мм рт. ст. до 15 мм рт. ст.

При таком низком парциальном давлении в каждых 100 мл крови остается только 4,4 мл связанного с гемоглобином кислорода. В этом случае каждые 100 мл протекающей крови отдают тканям 19,4 – 4,4, или 15 мл кислорода, т.е. каждый объем крови отдает тканям в 3 раза больше кислорода, чем в покое. Вспомните, что у хорошо тренированных бегунов-марафонцев сердечный выброс может увеличиться в 6-7 раз, чем при покое.

Если умножить это увеличение сердечного выброса (6-7 раз) на увеличение высвобождения кислорода в тканях каждым объемом крови (3 раза), получается, что к тканям было доставлено в 20 раз больше кислорода, чем в покое. Далее в этой главе Вы узнаете о существовании других факторов, улучшающих доставку кислорода в ткани во время физической нагрузки, поэтому даже при очень напряженной физической работе наблюдается только очень небольшое снижение Ро2 в мышечной ткани.

– Также рекомендуем “Коэффициент использования кислорода. Сохранение постоянства кислорода в тканях”

Оглавление темы “Кислород и его доставка в организме”:

1. Диффузия газов через дыхательную мембрану. Дыхательная мембрана

2. Емкость дыхательной мембраны. Диффузионная емкость для кислорода

3. Вентиляционно-перфузионный коэффициент. Парциальное давление кислорода и двуокиси углерода

4. Концепция физиологического шунта. Концепция физиологического мертвого пространства

5. Обмен кислорода в организме. Транспорт кислорода из легких в ткани

6. Транспорт кислорода артериальной кровью. Диффузия кислорода

7. Гемоглобин. Роль гемоглобина в транспорте кислорода

8. Коэффициент использования кислорода. Сохранение постоянства кислорода в тканях

9. Диссоциация оксигемоглобина и ее зависимость. Эффект Бора

10. Участие кислорода в метаболизме. Метаболическое потребление кислорода

Источник

Обмен кислорода в организме. Транспорт кислорода из легких в ткани

После диффузии кислорода из альвеол в капиллярную кровь его дальнейший транспорт в капилляры периферических тканей совершается почти полностью в связанной с гемоглобином форме. Наличие в эритроцитах гемоглобина позволяет крови транспортировать в 30-100 раз больше кислорода, чем могло бы транспортироваться в виде газа, растворенного в водной составляющей крови.

В клетках тканей тела кислород реагирует с разными веществами, формируя большое количество двуокиси углерода, который потом входит в капилляры ткани и транспортируется обратно в легкие. Двуокись углерода также связывается с разными химическими веществами, находящимися в крови, что увеличивает транспорт двуокиси углерода в 15-20 раз.

В этой статье представлены физические и химические принципы транспорта кислорода и двуокиси углерода в крови и тканевой жидкости как с количественной, так и качественной стороны.

Газы могут переместиться из одной точки в другую путем диффузии и причиной такого передвижения всегда является наличие градиента парциального давления между этими точками. Так, кислород диффундирует в легких из альвеол в капиллярную кровь, потому что парциальное давление кислорода (Рог) в альвеолах больше, чем в крови легочных капилляров. В других тканях тела Ро2 в капиллярной крови выше, чем в тканях, и это заставляет кислород диффундировать в ткани.

кислород в организме

В метаболических процессах клеток кислород используется для образования двуокиси углерода, в результате внутриклеточное давление двуокиси углерода (Рсо2) поднимается до высоких значений, что приводит к диффузии двуокиси углерода в тканевые капилляры. Когда кровь доходит до легких, двуокись углерода диффундирует из крови в альвеолы, т.к. Рсог в крови легочных капилляров выше, чем в альвеолах. Таким образом, транспорт кислорода и двуокиси углерода кровью зависит как от диффузии, так и от кровотока. Далее рассмотрим количественную сторону факторов, определяющих эти явления.

В верхней части рисунка изображена альвеола, расположенная рядом с легочным капилляром, и показана диффузия молекул кислорода из альвеолярного воздуха в кровь. Ро2 в альвеолярной газовой смеси составляет 104 мм рт. ст., а Ро2 в венозной крови, входящей в легочный капилляр через его артериальный конец, составляет только 40 мм рт. ст., т.к. большое количество кислорода было поглощено из крови во время прохождения ее через периферические ткани. Таким образом, начальная разница в парциальном давлении, являющаяся причиной диффузии кислорода в легочные капилляры, составляет 104 – 40, или 64 мм рт. ст. На графике в нижней части рисунка виден резкий подъем Ро2 крови во время прохождения ее через капилляр; к моменту прохождения 1/3 длины капилляра Р02 в крови составляет около 104 мм рт. ст., т.е. почти достигает Р02 в альвеолярном воздухе.

Поглощение кислорода кровью в легких во время физической нагрузки. При тяжелой физической нагрузке потребление кислорода может оказаться в 20 раз выше нормы. При этом из-за повышения сердечного выброса при такой нагрузке время прохождения легочного капилляра кровью может сократиться более чем в 2 раза. Однако в силу существования большого фактора надежности для диффузии кислорода через легочную мембрану кровь ко времени выхода из капилляра все же насыщается кислородом почти до максимального уровня. Это объясняется следующим.

Во-первых, во время физической нагрузки диффузионный объем кислорода возрастает почти в 3 раза. Это происходит главным образом из-за увеличения площади поверхности капилляров, участвующих в процессе диффузии, а также из-за приближения вентиляционно-перфузионного коэффициента в верхних частях легких к идеальной величине. Во-вторых, при отсутствии физической нагрузки кровь достигает почти полного насыщения кислородом уже после прохождения первой трети легочного капилляра и во время прохождения следующих двух третей обычно в нее добавляется очень мало кислорода. Можно сказать, что в покое кровь остается в легочных капиллярах в 3 раза дольше, чем это необходимо для полного насыщения ее кислородом, поэтому во время физической нагрузки кровь может полностью или почти полностью насыщаться кислородом и после сокращения времени пребывания в капиллярах.

– Также рекомендуем “Транспорт кислорода артериальной кровью. Диффузия кислорода”

Оглавление темы “Кислород и его доставка в организме”:

1. Диффузия газов через дыхательную мембрану. Дыхательная мембрана

2. Емкость дыхательной мембраны. Диффузионная емкость для кислорода

3. Вентиляционно-перфузионный коэффициент. Парциальное давление кислорода и двуокиси углерода

4. Концепция физиологического шунта. Концепция физиологического мертвого пространства

5. Обмен кислорода в организме. Транспорт кислорода из легких в ткани

6. Транспорт кислорода артериальной кровью. Диффузия кислорода

7. Гемоглобин. Роль гемоглобина в транспорте кислорода

8. Коэффициент использования кислорода. Сохранение постоянства кислорода в тканях

9. Диссоциация оксигемоглобина и ее зависимость. Эффект Бора

10. Участие кислорода в метаболизме. Метаболическое потребление кислорода

Источник