Мономеры гемоглобина это липиды

Мономеры гемоглобина это липиды thumbnail

Мономеры гемоглобина это липиды

12

1 ответ:

Мономеры гемоглобина это липиды

0

0

Аминокислота. Так как гемоглобин-белок. А мономером белка является аминокислота.

Читайте также

Мономеры гемоглобина это липиды









10в
11в
12б
13г
14б
15пептидные
16в
17г
18г
19а
20б

Мономеры гемоглобина это липиды

Сезонные изменения в жизни растенийТравянистые растения: большая часть травянистых растений, а именно стебли и листья отмирают на зиму, реже остаются в виде подземных видоизмененных корней, клубней, корневищ, луковиц в которых находится, запас питательных веществ, и может быть использован растением на следующий год на новый вегетативный период.Цветы: увядание цветка означает лишь переход к новой стадии жизни растения. В большинстве случаев это зависит от температурного режима осенью, а также от чрезмерной влажности воздуха, недостатка света.Изменение окраски и опадение листьев: летом листья имеют зеленый цвет из-за большого количества пигмента хлорофилла, содержащегося в них. Однако, наряду с хлорофиллом, зеленые листья содержат и другие пигменты – желтый ксантофилл и оранжевый каротин. Летом эти пигменты незаметны, так как замаскированы большим количеством хлорофилла. Осенью же по мере затухания жизнедеятельности в листе хлорофилл постепенно разрушается. Тут-то и проявляются в листе желтые и красные оттенки ксантофилла и каротина. Разрушение хлорофилла интенсивнее происходит на свету, то есть в солнечную погоду. Вот почему в пасмурную дождливую осень листья дольше сохраняют свою зеленую окраску. Но если на смену затяжным дождям приходит “бабье лето”, то кроны деревьев за 1-2 дня окрашиваются в золотистые краски осени. Помимо золотых, осенние наряды деревьев содержат багряные оттенки. Этот цвет обусловливает пигмент, который называется антоцианом. При понижении температуры, а также при ярком свете количество антоциана в клеточном соке увеличивается.Выводы: Осень – переломное время года: за короткий срок с сентября по ноябрь в природе совершается переход от тепла к морозам, от зелени к снегу, от лета к зиме. Нужно всего 3 месяца, чтобы одетый зеленой листвой лес с пышным травяным покровом, принял вполне зимний вид – безлистные, голые деревья на белом фоне снега.Сезонные изменения в жизни животных Приспособления холоднокровных животных к зимовке. Холоднокровные животные переносят зиму в неактивном состоянии. В их организме происходят изменения, которые начинаются заблаговременно с лета. К осени у них увеличиваются запасы питательных веществ, за счет которых в замедленном темпе поддерживается обмен веществ. В их клетках уменьшается количество воды. Несмотря на такую подготовленность, многие холоднокровные животные зимуют в убежищах, в которых суровые условия зимы проявляются менее резко.Приспособления теплокровных животных к зимовке. Теплокровные животные обладают меньшей способностью к переохлаждению, чем холоднокровные. Постоянная температура тела обеспечивается у них высокой интенсивностью обмена веществ. Для поддержания температуры на одном уровне у них возникают такие особенности, как теплоизолирующие покровы жировые отложения и др. Чтобы уменьшить теплоотдачу в зимних условиях, у них происходит осенняя линька – смена летнего меха у млекопитающих и оперения у птиц на более густое, зимнее. Теплокровные животные не впадают в состояние зимнего покоя, если они могут прокормить себя зимой. Млекопитающие, не способные к добыванию корма в зимних условиях, впадают в спячку. Перед спячкой животные накапливают в организме питательные вещества, в основном жиры до 40% массы тела, и устраиваются в убежище.Эфемероиды ― МНОГОЛЕТНИЕ растения с достаточно короткими сроками вегетации. После вегетационного периода жизненный цикл растений замедляется. Наземная часть эфемероидов сохнет и постепенно отмирает. За время вегетации в подземной части растений накапливаются питательные вещества, благодаря которым растения находятся как бы в спячке и с наступлением благоприятных условий жизнь эфемероидов возобновляется. К эфемероидам относятся корневищные, клубневые и луковичные растения – сон-трава, сциллы, подснежник, пролески и т. п

Мономеры гемоглобина это липиды

Я дмаю1 синтез питательных веществ

Мономеры гемоглобина это липиды

Двенадцатиперстная кишка – это самый начальный отдел тонкого кишечника. отходящий от желудка. Вообще весь тонкий кишечник длинный, а двенадцатиперстная кишка длиной в двенадцать перстов (пальцев). Это две ладошки по ширине и ещё два пальца.Её выделяют от всего остального кишечника, потому, что она несёт особую функцию.Пищевой комок в неё поступает из желудка, там он уже обработался желудочным соком. А в 12 п. к-ку впадает два протока. Один несёт желчь из печени и желчного пузыря, а другой – панкреатический сок из поджелудочной железы.Желчь расщепляет жиры., содержащиеся в комке из желудка. а панкр. сок – это смесь ферментов, способных расщеплять белки. углеводы и тоже жиры. То есть в 12п. к-ке переваривается и расщепляется   на простые молекулы всё, . что осталось непереваренным в желудке. На этом процесс пищеварения заканчивается. Дальше уже идет всасывание расщеплённой пищи ворсинками тонкого кишечника.Все питательные вещества идут в кровоток. А в толстом кишечнике всасывается только вода и формируется кал –   это то, что организму не нужно.  

Мономеры гемоглобина это липиды

Функция толстого кишечника- формирование кала.

Источник

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1.34 мл. O2

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130—160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120—160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1—3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145—225 г/л, а к 3—6 месяцам снижается до минимального уровня — 95—135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Читайте также:  Какая норма гемоглобина у ребенка

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110—155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4-х субъединиц влияет на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Читайте также:  Лимфоузлы с низким гемоглобином

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов, или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.
Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии.
Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный Гемоглобин (эмбриональный)
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167—175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; KE van Holde & KG Ahern (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & C Chothia (1976), “Structural patterns in globular proteins”, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). “An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure”. Am Heart J. 151 (1): 91.e1—91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). “Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds”. J Mol Biol. 356 (2): 335—53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). “Evolution of Hemoglobin and Its Genes”. Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

Воски — это сложные эфиры высших жирных кислот и высокомолекулярных спиртов.
У растений они образуют пленку на поверхности органов — листьев, плодов. Эти соединения защищают наземные органы растений от излишней потери влаги, предотвращают проник­новение патогенов и т. п. У насекомых они покрывают тело или служат для построения сот. 

Гликолипиды также являются компонентами мембран, но их содержание там невелико.Нелипидная часть гликолипидов включает остаток углевода.

Функции липидов. 

Мономеры гемоглобина это липиды

Запасающая  – жиры, откладываются в запас в тканях позвоночных животных. 

Энергетическая  – половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров. Жиры используются и как источник воды. Энергетический эффект от расщепления 1 г жира – 39 кДж, что в два раза больше энергетического эффекта от расщепления 1 г глюкозы или белка. 
Защитная  – подкожный жировой слой защищает организм от механических повреждений. 
Структурная  – фосфолипиды  входят в состав клеточных мембран. 
Теплоизоляционная  – подкожный жир помогает сохранить тепло. 
Электроизоляционная
  – миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов. 
Питательная  – некоторые липидоподобные вещества способствуют наращиванию мышечной массы, поддержанию тонуса организма. 
Смазывающая  – воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налетом покрыты листья многих растений, воск используется в строительстве пчелиных сот. 
Гормональная  – гормон надпочечников – кортизон и половые гормоны имеют липидную природу.

Мономеры гемоглобина это липиды

ТЕМАТИЧЕСКИЕ ЗАДАНИЯ  

 

Часть А

А1. Мономером полисахаридов может быть:
1) аминокислота 
2) глюкоза 
3) нуклеотид 
4) целлюлоза

А2. В клетках животных запасным углеводом является:
1) целлюлоза 
2) крахмал 
3) хитин 
4) гликоген

А3. Больше всего энергии выделится при расщеплении:
1) 10 г белка 
2) 10 г глюкозы 
3) 10 г жира 
4) 10 г аминокислоты

А4. Какую из функций липиды не выполняют?
1) энергетическую 
2)каталитическую 
3) изоляционную 
4) запасающую

А5. Липиды можно растворить в:
1) воде 
2) растворе поваренной соли 
3) соляной кислоте 
4) ацетоне

Часть В

В1. Выберите особенности строения углеводов
1) состоят из остатков аминокислот
2) состоят из остатков глюкозы
3) состоят из атомов водорода, углерода и кислорода
4) некоторые молекулы имеют разветвленную структуру
5) состоят из остатков жирных кислот и глицерина
6) состоят из нуклеотидов

Читайте также:  Норма гемоглобина у месячного

В2. Выберите функции, которые углеводы выполняют в организме
1) каталитическая 
2) транспортная 
3) сигнальная 
4)строительная     
5) защитная        
6) энергетическая

ВЗ. Выберите функции, которые липиды выполняют в клетке
1) структурная        
2) энергетическая 
3) запасающая 
4) ферментативная  
5) сигнальная       
6) транспортная

В4. Соотнесите группу химических соединений с их ролью в клетке:

РОЛЬ СОЕДИНЕНИЯ В КЛЕТКЕ

СОЕДИНЕНИЕ

А) быстро расщепляются с выделением энергии
Б) являются основным запасным веществом растений и животных
В) являются источником для синтеза гормонов
Г) образуют теплоизолирующий слой у животных
Д) являются источником дополнительной воды у верблюдов
Е) входят в состав покровов насекомых

1) углеводы
2) липиды

Часть  С

С1. Почему в организме не накапливается глюкоза, а накапливается крахмал и гликоген?

Тест 2

Часть 1 содержит 10 заданий (А1-10). К каждому заданию приводится 4 варианта ответа, один из которых верный.

Часть 1

А 1. Моносахарид, в молекуле которого содержится пять атомов углерода

1. глюкоза

2. фруктоза

3. галактоза

4. дезоксирибоза

А 2. Химическая связь, соединяющая остатки глицерина и высших жирных кислот в молекуле жира

1. ковалентная полярная

2. ковалентная неполярная

3. ионная

4. водородная

А 3. Мономером крахмала и целлюлозы является

1. глюкоза

2. глицерин

3. нуклеотид

4. аминокислота

А 4. В каком из веществ растворятся липиды

1. вода

2. ацетон

3. физиологический раствор

4. соляная кислота

А 5. Зимостойкость растений повышается при накоплении в клетках:

1. крахмала

2. жиров

3. сахаров

4. минеральных солей

А 6. В каких продуктах содержится наибольшее количество углеводов, необходимых человеку?

1. в сыре и твороге

2. хлебе и картофеле

3. мясе и рыбе

4. растительном масле

А 7. Конечными продуктами гликогена в клетке являются

1. АТФ и вода

2. кислород и углекислый газ

3. вода и углекислый газ

4. АТФ и кислород

А 8. Запасным углеводом в животной клетке является

1. крахмал

2. гликоген

3. целлюлоза

4. хитин

А 9. Сок, не содержащий ферментов, но облегчающий всасывание жиров в тонком кишечнике

1. желудочный сок

2. поджелудочный сок

3. кишечный сок

4. желч

А 10. У человека углеводы пищи начинают перевариваться в

1. двенадцатипёрстной кишке

2. ротовой полости

3. желудке

4. толстом кишечнике

Часть 2 содержит 8 заданий (В1-В8): 3 – с выбором трёх верных ответов из шести, 3 – на соответствие, 2 – на установление последовательности биологических процессов, явлений, объектов.

Часть 2

В 1. Липиды, встречающиеся только у животных

1. холестерин

2. липопротеиды

3. триглицериды

4. фосфолипиды

5. желчные кислоты

6. тестостерон

В 2. Моносахаридами являются

1. рибоза

2. сахароза

3. лактоза

4. глюкоза

5. мальтоза

6. галактоза

В3. Сложные органические соединения, в молекулу которых входит углеводный компонент

1. рибонуклеотиды

2. фосфолипиды

3. дезоксирибонуклеотиды

4. аминокислоты

5. аденозинтрифосфат

6. холестерин

В 4. Формы углеводов в растительных и животных клетках

Клетка Углевод

А) растительные клетки 1. гликоген

Б) животные клетки 2. крахмал

3. целлюлоза

4. гепарин

В 5. Установите соответствие между характеристикой и органическим веществом

Характеристика Органическое вещество

1. Состоят из углерода, водорода и кислорода А. Углеводы

2. Низкая теплопроводность Б. Жиры

3. Образуют биополимеры – полисахариды

4. Обеспечивают взаимодействие клеток одного типа

5. Все они не полярны

6. Практически не растворимы в воде

В 6. Установите соответствие между углеводом и группой углеводов, к которой они относятся

Название углевода Группа углеводов

1.Глюкоза А. моносахариды

2. Сахароза Б. Дисахариды

3. Галактоза В. Полисахариды

4. Крахмал

5. Мальтоза

6. Лактоза

В 7. Расположите моносахариды в порядке возрастания числа атомов углерода в их молекуле

1. диоксиацетон (кетоза)

2. глюкоза

3. элитроза треоза

4. рибоза

5. глюкозамин

6. рамно-О

В 8. Расположите жиры в порядке возрастания атомов углерода в их молекуле

1. трипальмитин

2. тристеарин

3. трилаурин

4. трикаприлин

5. тримиристин

Часть 3 содержит 6 заданий. На задание С 1 дайте краткий свободный ответ, а на задания С2-С6 – полный развёрнутый ответ.

Часть 3

С 1. Какую роль для живых организмов играют фосфолипиды и гликолипиды?

С 2. Укажите номера предложений, в которых допущены ошибки. Объясните их.

1. Углеводы представляют собой соединения углерода и водорода.

2. Различают три класса углеводов – моносахариды, дисахариды и полисахариды.

3. Наиболее распространённые моносахариды – сахароза и лактоза.

4. Они растворимы в воде и обладают сладким вкусом.

5. При расщеплении 1 г. глюкозы выделяется 35,2 кДЖ энергии

С 3. Каковы функции углеводов в растительных клетках?

С 4. Объясните, почему запасающую функцию выполняют полисахариды, а не моносахариды?

Ответы:

Часть 1

А1-4 А6-2

А2-1 А7-3

А3-1 А8-2

А4-2 А9-4

А5-3 А10-2

Часть 2

В1-1 3 4

В2-1 4 6

В3-1 3 5

В4 -А 2 3, Б 1 4

В5-А 1 3 4, Б 2 5 6

В6-А1 3, Б 2 5 6, В 4

В7-1 3 4 2 5 6

В8-4 3 5 1 2

Часть 3

С 1. Фосфолипиды и гликолипиды являются компонентами клеточных мембран.

С 2. 1. углерода и воды.

3. дисахариды.

5. 17,6 кДЖ

С 3. 1. Моносахариды и дисахариды выполняют энергетическую функцию.

2. Крахмал – запасное питательное вещество.

3. Целлюлоза входит в состав клеточных стенок.

С 4. 1. Так как полисахариды не растворимы в воде, они не оказывают осмотического и химического действия на клетку.

2. В твёрдом и обезвоженном состоянии имеют меньший объём и большую полезную массу.

3. Менее доступны для болезнетворных бактерий и грибов, так как эти организмы пищу всасывают, а не заглатывают.

4. При необходимости легко превращаются в моносахариды.

Источник